Abstract

This paper investigates the maximum wall shear stress value τmax and its location xmax as measured on a smooth flat plate impinged upon by a normal planar jet. τmax and xmax are found to be closely related to the stagnation pressure Ps and the half-width of the mean wall pressure profile bpw. The measurements were made by two different techniques: a Stanton probe and oil film interferometry. The maximum wall shear stress location xmax is found to be independent of the jet Reynolds number. At a small nozzle-to-plate distance H6Djet,xmax is related to the jet slot width as xmax1.1Djet. At a large nozzle-to-plate distance H6Djet, the maximum wall shear stress location is related to the mean wall pressure half-width as xmax1.4bpw. A new Reynolds number, referred to as the stagnation Reynolds number, is defined as Res=def2bpwPs/ρ/ν, where ρ is the fluid density and ν is the kinematic viscosity. The maximum wall shear stress is found to be strongly influenced by the stagnation Reynolds number, and the dependence as measured by Stanton probes is approximated by a power law of τmax/Ps0.38/Res0.38. The solution of the laminar flow equations in the Appendix gives an alternate relation for τmax, which is in better agreement with the oil film interferometry measurements. Dimensional analysis is performed to gain insight into the empirical findings.

References

1.
Han
,
B.
, and
Goldstein
,
R. J.
,
2006
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. New York Acad. Sci.
,
934
(
1
), pp.
147
161
.10.1111/j.1749-6632.2001.tb05849.x
2.
Polat
,
S.
,
1993
, “
Heat and Mass Transfer in Impingement Drying
,”
Drying Technol.
,
11
(
6
), pp.
1147
1176
.10.1080/07373939308916894
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.10.1016/0894-1777(93)90022-B
4.
Fabbri
,
M.
,
Jiang
,
S.
, and
Dhir
,
V. K.
,
2005
, “
A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
1
), pp.
38
48
.10.1115/1.1804205
5.
Carlomagno
,
G. M.
, and
Ianiro
,
A.
,
2014
, “
Thermo-Fluid-Dynamics of Submerged Jets Impinging at Short Nozzle-to-Plate Distance: A Review
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
15
35
.10.1016/j.expthermflusci.2014.06.010
6.
Tuck
,
E. O.
,
1983
, “
Continuous Coating With Gravity and Jet Stripping
,”
Phys. Fluids
,
26
(
9
), pp.
2352
2358
.10.1063/1.864438
7.
Ellen
,
C. H.
, and
Tu
,
C. V.
,
1984
, “
An Analysis of Jet Stripping of Liquid Coatings
,”
ASME J. Fluids Eng.
,
106
(
4
), pp.
399
404
.10.1115/1.3243137
8.
Tu
,
C. V.
,
1995
, “
Impingement of Plane Turbulent Jets and Their Application in Industrial Coating Control
,” Ph.D. thesis,
Univ. Newcastle
,
Callaghan, NSW, Australia
.
9.
Lacanette
,
D.
,
Gosset
,
A.
,
Vincent
,
S.
,
Buchlin
,
J.-M.
, and
Arquis
,
E.
,
2006
, “
Macroscopic Analysis of Gas-Jet Wiping: Numerical Simulation and Experimental Approach
,”
Phys. Fluids
,
18
(
4
), p.
042103
.10.1063/1.2186589
10.
Gosset
,
A.
, and
Buchlin
,
J.-M.
,
2007
, “
Jet Wiping in Hot-Dip Galvanization
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
466
475
.10.1115/1.2436585
11.
Johnstone
,
A. D.
,
Kosasih
,
B.
,
Le
,
Q.
,
Dixon
,
A.
, and
Renshaw
,
W.
,
2019
, “
Coating Film Profiles Generated by Fluctuating Location of the Wiping Pressure and Shear Stress
,”
ISIJ Int.
,
59
(
2
), pp.
319
325
.10.2355/isijinternational.ISIJINT-2018-413
12.
Monin
,
A. S.
, and
Yaglom
,
A. M.
,
1965
,
Statistical Fluid Mechanics, Volume I: Mechanics of Turbulence
, Vol.
1
,
The MIT Press
,
Cambridge, MA
.
13.
Tu
,
C. V.
, and
Wood
,
D. H.
,
1996
, “
Wall Pressure and Shear Stress Measurements Beneath an Impinging Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
4
), pp.
364
373
.10.1016/S0894-1777(96)00093-3
14.
Ritcey
,
A.
,
McDermid
,
J. R.
, and
Ziada
,
S.
,
2017
, “
The Maximum Skin Friction and Flow Field of a Planar Impinging Gas Jet
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101204
.10.1115/1.4036717
15.
Ritcey
,
A.
,
McDermid
,
J. R.
, and
Ziada
,
S.
,
2018
, “
Effect of Jet Oscillation on the Maximum Impingement Plate Skin Friction
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091201
.10.1115/1.4039515
16.
Schauer
,
J. J.
, and
Eustis
,
R. H.
,
1963
,
The Flow Development and Heat Transfer Characteristics of Plane Turbulent Impinging Jets
,
Department of Mechanical Engineering, Stanford University
, Report No. 3.
17.
Cartwright
,
W. G.
, and
Russell
,
P.
,
1967
, “
Characteristics of a Turbulent Slot Jet Impinging on a Plane Surface
,”
Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
, Vol.
182
,
SAGE Publications Sage UK
:
London, UK
, pp.
309
319
.10.1243/PIME_CONF_1967_182_242_02
18.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1973
, “
Plane Turbulent Impinging Jets
,”
J. Hydraul. Res.
,
11
(
1
), pp.
29
59
.10.1080/00221687309499789
19.
Beltaos
,
S.
,
1974
, “
Turbulent Impinging Jets
,” Ph.D. thesis,
University of Alberta
, Edmonton, Canada.
20.
Narayanan
,
V.
,
Seyed-Yagoobi
,
J.
, and
Page
,
R. H.
,
2004
, “
An Experimental Study of Fluid Mechanics and Heat Transfer in an Impinging Slot Jet Flow
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1827
1845
.10.1016/j.ijheatmasstransfer.2003.10.029
21.
Beltaos
,
S.
, and
Rajaratnam
,
N.
,
1974
, “
Impinging Circular Turbulent Jets
,”
J. Hydraul. Div.
,
100
(
10
), pp.
1313
1328
.10.1061/JYCEAJ.0004072
22.
Beltaos
,
S.
,
1976
, “
Oblique Impingement of Plane Turbulent Jets
,”
J. Hydraul. Div.
,
102
(
9
), pp.
1177
1192
.10.1061/JYCEAJ.0004605
23.
Tu
,
C. V.
,
Hooper
,
J. D.
, and
Wood
,
D. H.
,
1992
, “
Wall Pressure and Shear Stress Measurements for Normal Jet Impingement
,”
11th Australasian Fluid Mechanics Conference
, Hobart, Australia, Dec. 14–18, pp.
1109
1112
.
24.
Zhou
,
A.
,
Pirozzoli
,
S.
, and
Klewicki
,
J. C.
,
2017
, “
Mean Equation Based Scaling Analysis of Fully-Developed Turbulent Channel Flow With Uniform Heat Generation
,”
Int. J. Heat Mass Transfer
,
115
, pp.
50
61
.10.1016/j.ijheatmasstransfer.2017.08.009
25.
Adimurthy
,
M.
, and
Katti
,
V. V.
,
2017
, “
Local Distribution of Wall Static Pressure and Heat Transfer on a Smooth Flat Plate Impinged by a Slot Air Jet
,”
Heat Mass Transfer
,
53
(
2
), pp.
611
623
.10.1007/s00231-016-1847-9
26.
Dogruoz
,
M. B.
,
2005
, “
Experimental and Numerical Investigation of Turbulent Heat Transfer Due to Rectangular Impinging Jets
,” Ph.D. thesis,
Univ. of Arizona
, Tucson, AZ.
27.
Dogruoz
,
M. B.
,
Ortega
,
A.
, and
Westphal
,
R. V.
,
2015
, “
Measurements of Skin Friction and Heat Transfer Beneath an Impinging Slot Jet
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
213
222
.10.1016/j.expthermflusci.2014.08.014
28.
Ritcey
,
A.
,
2018
, “
Skin Friction and Fluid Dynamics of a Planar Impinging Gas Jet
,” Ph.D. thesis,
McMaster Univ
.,
Ontario, Canada
.
29.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. C.
,
2000
, “
The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface
,”
J. Fluid Mech.
,
418
, pp.
351
375
.10.1017/S002211200000121X
30.
Kamoi
,
A.
, and
Tanaka
,
H.
,
1972
, “
Measurements of Wall Shear Stress, Wall Pressure and Fluctuations in the Stagnation Region Produced by Oblique Jet Impingement
,”
Conference on Fluid Dynamic Measurements in the Industrial and Medical Environment
,
D. J.
Cockrell
, ed., New York, pp.
217
227
.
31.
Schlichting
,
H.
, and
Gersten
,
K.
,
2016
,
Boundary-Layer Theory
,
Springer
, Berlin.
32.
Buckingham
,
E.
,
1915
, “
The Principle of Similitude
,”
Nature
,
96
(
2406
), pp.
396
397
.10.1038/096396d0
33.
Bridgman
,
P. W.
,
1922
,
Dimensional Analysis
,
Yale University Press
, New Haven, CT/London.
34.
Sedov
,
L. I.
,
1959
,
Similarity and Dimensional Methods in Mechanics
,
CRC Press
, New York/London.
35.
Taylor
,
G. I.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion.-II. The Atomic Explosion of 1945
,”
Proc. R. Soc. London Ser. A. Math. Phys. Sci.
,
201
(
1065
), pp.
175
186
.10.1098/rspa.1950.0049
36.
Tennekes
,
H.
, and
Lumley
,
J. L.
,
1972
,
A First Course in Turbulence
,
The MIT Press
,
Cambridge, MA
.
37.
Wei
,
T.
,
Fife
,
P.
,
Klewicki
,
J. C.
, and
McMurtry
,
P.
,
2005
, “
Properties of the Mean Momentum Balance in Turbulent Boundary Layer, Pipe and Channel Flows
,”
J. Fluid Mech.
,
522
, pp.
303
327
.10.1017/S0022112004001958
38.
Wei
,
T.
,
2020
, “
Analyses of Buoyancy-Driven Convection
,”
Adv. Heat Transfer
,
52
, pp.
1
93
.10.1016/bs.aiht.2020.09.002
39.
Young
,
D. F.
,
Munson
,
B. R.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2010
,
A Brief Introduction to Fluid Mechanics
,
Wiley
, Hoboken, NJ.
40.
Rajaratnam
,
N.
,
1976
,
Turbulent Jets
,
Elsevier
, Amsterdam, The Netherlands/Oxford, UK/New York.
41.
Guo
,
Y.
, and
Wood
,
D.
,
2002
, “
Measurements in the Vicinity of a Stagnation Point
,”
Exp. Thermal Fluid Sci.
,
25
(
8
), pp.
605
614
.10.1016/S0894-1777(01)00115-7
42.
Winter
,
K. G.
,
1979
, “
An Outline of the Techniques Available for the Measurement of Skin Friction in Turbulent Boundary Layers
,”
Prog. Aerospace Sci.
,
18
, pp.
1
57
.10.1016/0376-0421(77)90002-1
43.
Back
,
L.
,
1969
, “
Incompressible Laminar Boundary Layers With Large Acceleration
,”
ASME J. Appl. Mech.
,
36
(
2
), pp.
336
338
.10.1115/1.3564640
44.
Launder
,
B.
,
1964
, “
An Improved Pohlhausen-Type Method of Calculating the Two-Dimensional Laminar Boundary Layer in a Pressure Gradient
,”
ASME J. Heat Transfer-Trans. ASME
,
86
(
3
), pp.
360
364
.10.1115/1.3688694
45.
Arnal
,
D.
,
Habiballah
,
M.
, and
Coustols
,
E.
,
1984
, “
Laminar Instability Theory and Transition Criteria in Two and Three-Dimensional Flow
,”
La Recherche Aerospatiale (English Ed.)
,
2
, pp.
45
63
.
46.
Achenbach
,
E.
,
1968
, “
Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow Up to Re = 5,000,000
,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
.10.1017/S0022112068002120
47.
Catalano
,
P.
,
Wang
,
M.
,
Iaccarino
,
G.
, and
Moin
,
P.
,
2003
, “
Numerical Simulation of the Flow Around a Circular Cylinder at High Reynolds Numbers
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
463
469
.10.1016/S0142-727X(03)00061-4
You do not currently have access to this content.