Abstract

In this article, the significant characteristics of wave transmission and boundary layer influence are studied for an incompressible fluid flowing through a long elastic tube using lumped parameter model. An ameliorated version of the lumped parameter model is derived, where the flow impedance is linked with Womersley number to understand the phenomena of fluid wall interaction, especially in human airways. To analyze the flow phenomena through tubes, the flow governing equations are transformed through the Bessel series. We have observed that for the low value of Womersley number, there is a phase difference between pressure and flowrate, which produces a frequency-dependent flow impedance. The physiological relevance of this result is especially shown in the nasal-pharynx during breathing. The results are validated by ansys-based numerical simulation as well as by experimental results.

References

1.
Carpenter
,
P. W.
, and
Pedley
,
T. J.
,
2003
,
Flow Past Highly Compliant Boundaries and in Collapsible Tubes
,
Springer
, Berlin.
2.
Westerhof
,
N.
,
Bosman
,
F.
,
De Vries
,
C. J.
, and
Noordergraaf
,
A.
,
1969
, “
Analog Study of the Human Systemic Arterial Tree
,”
J. Biomech.
,
2
(
2
), pp.
121
143
.10.1016/0021-9290(69)90024-4
3.
Jager
,
G. N.
,
Westerhof
,
N.
, and
Noordergraaf
,
A.
,
1965
, “
Oscillatory Flow Impedance in Electrical Analog of Arterial System: Representation of Sleeve Effect and Non-Newtonian Properties of Blood
,”
Circ. Res.
,
16
(
2
), pp.
121
133
.10.1161/01.RES.16.2.121
4.
Pollack
,
G. H.
,
Reddy
,
R. V.
, and
Noordergraaf
,
A.
,
1968
, “
Input Impedance, Wave Travel, and Reflections in the Human Pulmonary Arterial Tree:Studies Using an Electrical Analog
,”
IEEE Trans. Biomed. Eng.
,
BME-15
(
3
), pp.
151
164
.10.1109/TBME.1968.4502559
5.
Ozbulut
,
M.
,
Tofighi
,
N.
,
Goren
,
O.
, and
Yildiz
,
M.
,
2018
, “
Investigation of Wave Characteristics in Oscillatory Motion of Partially Filled Rectangular Tanks
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
041204
.10.1115/1.4038242
6.
Sarkar
,
A.
, and
Jayaraman
,
G.
,
2001
, “
Nonlinear Analysis of Oscillatory Flow in the Annulus of an Elastic Tube: Application to Catheterized Artery
,”
Phys. Fluids
,
13
(
10
), pp.
2901
2911
.10.1063/1.1389285
7.
Fullana
,
J.
,
Cros
,
F.
,
Flaud
,
P.
, and
Zaleski
,
S.
,
2003
, “
Filling a Collapsible Tube
,”
J. Fluid Mech.
,
494
, pp.
285
296
.10.1017/S0022112003005834
8.
Saengow
,
C.
,
Giacomin
,
A. J.
, and
Dimitrov
,
A. S.
,
2020
, “
Normal Stress Differences of Human Blood in Unidirectional Large-Amplitude Oscillatory Shear Flow
,”
ASME J. Fluids Eng.
,
142
(
12
), p.
121101
.10.1115/1.4048467
9.
Ionescu
,
C. M.
,
2013
,
The Human Respiratory System—An Analysis of the Interplay Between Anatomy, Structure, Breathing and Fractal Dynamics
,
Springer
, Berlin.
10.
Stanley
,
A. A.
,
Amini
,
A.
,
Glick
,
C.
,
Usevitch
,
N.
,
Menguc
,
Y.
, and
Keller
,
S. J.
,
2021
, “
Lumped-Parameter Response Time Models for Pneumatic Circuit Dynamics
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
5
), p.
051001
.10.1115/1.4049009
11.
Noordergraaf
,
A.
,
Verdouw
,
P. D.
, and
Boom
,
H. B. K.
,
1963
, “
The Use of an Analog Computer in a Circulation Model
,”
Prog. Cardiovasc. Diseases
,
5
(
5
), pp.
419
439
.10.1016/S0033-0620(63)80009-2
12.
Rath
,
S.
, and
Mahapatra
,
B.
,
2022
, “
Low Reynolds Number Pulsatile Flow of a Viscoelastic Fluid Through a Channel: Effects of Fluid Rheology and Pulsation Parameters
,”
ASME J. Fluids Eng.
,
144
(
2
), pp. FE-21-1239.10.1115/1.4051761
13.
Huberts
,
W.
,
Bosboom
,
E. M. H.
, and
Vosse
,
F. N.
,
2009
, “
A Lumped Model for Blood Flow and Pressure in the Systemic Arteries Based on an Approximate Velocity Profile Function
,”
Math. Biosci. Eng.
,
6
, pp.
27
40
.10.3934/mbe.2009.6.27
14.
Bates
,
J. H. T.
,
2009
,
Lung Mechanics—An Inverse Modeling Approach
,
Cambridge University Press
, Cambridge, UK.
15.
Soni
,
B.
,
Nayak
,
A. K.
, and
Miguel
,
A. F.
,
2021
, “
Gas Flow in Occluded Respiratory Tree: A New Matrix-Based Approach
,”
ASME J. Fluids Eng.
, accepted. 10.1115/1.4053124
16.
Zamir
,
M.
,
2000
,
The Physics of Pulsatile Flow
,
AIP Press
, College Park, MD.
17.
Heil
,
M.
,
1997
, “
Stokes Flow in Collapsible Tubes: Computation and Experiment
,”
J. Fluid Mech.
,
353
, pp.
285
312
.10.1017/S0022112097007490
18.
Le
,
T. B.
,
Moghaddam
,
M. G.
,
Woodson
,
B. T.
, and
Gracia
,
G. J. M.
,
2019
, “
Airflow Limitation in a Collapsible Model of the Human Pharynx: Physical Mechanisms Studied With Fluid-Structure Interaction Simulations and Experiments
,”
Phys. Rep.
,
7
(
10
), p.
e14009
.
19.
West
,
J. B.
,
2012
,
Respiratory Physiology—The Essentials
, 9th ed.,
Lippincott Williams and Wilkins
, Philadelphia, PA.
20.
Soni
,
B.
, and
Nayak
,
A. K.
,
2019
, “
Effect of Inspiration Cycle and Ventilation Rate on Heat Exchange in Human Respiratory System
,”
J. Therm. Biol.
,
84
, pp.
357
367
.10.1016/j.jtherbio.2019.07.026
21.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known
,”
J. Physiol.
,
127
(
3
), pp.
553
563
.10.1113/jphysiol.1955.sp005276
22.
Bessems
,
D.
,
Rutten
,
M. C. M.
, and
van de Vosse
,
F. N.
,
2007
, “
A Wave Propagation Model of Blood Flow in Large Vessels Using an Approximate Velocity Profile Function
,”
J. Fluid Mech.
,
580
, pp.
145
168
.10.1017/S0022112007005344
23.
Soni
,
B.
,
Miguel
,
A. F.
, and
Nayak
,
A. K.
,
2020
, “
A Mathematical Analysis for Constructal Design of Tree Flow Networks Under Unsteady Flow
,”
Proc. R. Soc. A
,
476
(
2240
), p.
20200377
.10.1098/rspa.2020.0377
24.
Lavooij
,
C. S. W.
, and
Tusseling
,
A. S.
,
1991
, “
Fluid Structure Interaction in Liquid Filled Piping Systems
,”
J. Fluids Struct.
,
5
(
5
), pp.
573
595
.10.1016/S0889-9746(05)80006-4
25.
San
,
O. M. E. R.
, and
Staples
,
A. E.
,
2012
, “
Dynamics of Pulsatile Flow Through Elastic Micro Tubes
,”
Int. J. Appl. Mech.
,
04
(
01
), p.
1250006
.10.1142/S175882511200135X
You do not currently have access to this content.