Abstract

The geometric design of a gerotor motor has a significant impact on its function, performance, quality, reliability and cost. When designing a gerotor motor all these features must be considered. A gerotor motor can be classified into two types based on the geometric design; gerolor (pin design) and gerotor (nonpin design). In this article, geometric parameters of the two design types are discussed briefly and the operation of the gerotor motor is described as well. A numerical analysis is carried out by using computational fluid dynamics (CFD) tool (PumpLinx) to analyze the fluid flow and predict the performance of both types of gerotor designs. Various characteristics of the two designs of the gerotor motor are investigated and compared which include the gerotor design, fluid flowrate, velocity, pressure and output torque. Comparison of the results found out that using pin design gerotor motor, the flowrate, flow velocity, pressure and torque will vary greatly. Nonpin design can significantly reduce variations in all the flow characteristics thereby enhancing the stability and reduction in the leakage risk.

References

1.
Hsieh
,
C. F.
,
2009
, “
Influence of Gerotor Performance in Varied Geometrical Design Parameters
,”
ASME J. Mech. Des.
,
131
(
12
), p. 121008.10.1115/1.4000484
2.
Hsieh
,
C. F.
,
2010
, “
Non-Undercutting Region and Property Evaluation of Epitrochoidal Gerotor Geometry
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
224
(
2
), pp.
473
481
.10.1243/09544062JMES1694
3.
Hsieh
,
C. F.
,
2012
, “
Fluid and Dynamics Analyses of a Gerotor Pump Using Various Span Angle Designs
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121003
.10.1115/1.4007703
4.
Hsieh
,
C. F.
,
2015
, “
Flow Characteristics of Gerotor Pumps With Novel Variable Clearance Designs
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041107
.10.1115/1.4029274
5.
Hsieh
,
C. F.
, and
Yan
,
H. S.
,
2008
, “
Feasible Design Region and Sealing Property of Hypotrochoidal Gerotor Geometry
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
222
(
9
), pp.
1847
1854
.10.1243/09544062JMES774
6.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Geometric Design Using Hypotrochoid and Nonundercutting Conditions for an Internal Cycloidal Gear
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
413
420
.10.1115/1.2437806
7.
Hwang
,
Y. W.
, and
Hsieh
,
C. F.
,
2007
, “
Determination of Surface Singularities of a Cycloidal Gear Drive With Inner Meshing
,”
Math. Comput. Model.
,
45
(
3–4
), pp.
340
354
.10.1016/j.mcm.2006.05.010
8.
Hsieh
,
C. F.
, and
Hwang
,
Y. W.
,
2007
, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1269
1277
.10.1115/1.2779887
9.
Furustig
,
J.
,
Almqvist
,
A.
,
Pelcastre
,
L.
,
Bates
,
C. A.
,
Ennemark
,
P.
, and
Larsson
,
R.
,
2016
, “
A Strategy for Wear Analysis Using Numerical and Experimental Tools, Applied to Orbital Type Hydraulic Motors
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
12
), pp.
2086
2097
.10.1177/0954406215590168
10.
Furustig
,
J.
,
Larsson
,
R.
,
Almqvist
,
A.
,
Bates
,
C. A.
, and
Ennemark
,
P.
,
2015
, “
A Wear Model for EHL Contacts in Gerotor Type Hydraulic Motors
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
229
(
2
), pp.
254
264
.10.1177/0954406214534204
11.
Tessari
,
F.
,
Galluzzi
,
R.
, and
Amati
,
N.
,
2020
, “
Efficiency-Driven Design Methodology of Gerotor Hydraulic Units
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063501
.10.1115/1.4045421
12.
Dasgupta
,
K.
,
Mukherjee
,
A.
, and
Maiti
,
R.
,
1999
, “
Estimation of Critical System Parameters That Affect Orbit Motor Performance—Combining Simulation and Experiments
,”
ASME J. Manuf. Sci. Eng.
,
121
(
2
), pp.
300
306
.10.1115/1.2831220
13.
Dasgupta
,
K.
,
Mukherjee
,
A.
, and
Maiti
,
R.
,
1996
, “
Modeling and Dynamics of Epitrochoid Generated Orbital Rotary Piston Lsht Hydraulic Motor: A Bondgraph Approach
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
415
421
.10.1115/1.2831046
14.
Dasgupta
,
K.
,
Mukherjee
,
A.
, and
Maiti
,
R.
,
1996
, “
Theoretical and Experimental Studies of the Steady State Performance of an Orbital Rotor Low-Speed High-Torque Hydraulic Motor
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
210
(
6
), pp.
423
429
.10.1243/PIME_PROC_1996_210_070_02
15.
Nag
,
A.
,
Ramachandran
,
H.
, and
Shriwastava
,
A.
,
2020
, “
Optimization of the Interference Parameters of an Orbit Motor Using Genetic Algorithm
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
234
(
22
), pp.
4478
4492
.10.1177/0954406220924700
16.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.10.1115/1.4003196
17.
Ding
,
H.
,
Lu
,
X. J.
, and
Jiang
,
B.
,
2012
, “
A CFD Model for Orbital Gerotor Motor
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
PART 6
),
2006
.10.1088/1755-1315/15/6/062006
18.
Frosina
,
E.
,
Senatore
,
A.
,
Buono
,
D.
,
Monterosso
,
F.
,
Olivetti
,
M.
,
Arnone
,
L.
, and
Santato
,
L.
,
2013
, “
A Tridimensional CFD Analysis of the Lubrication Circuit of a Non-Road Application Diesel Engine
,”
SAE
Paper No. 2013-24-0130.10.4271/2013-24-0130
You do not currently have access to this content.