Abstract

This paper aims to investigate the effect of pitching amplitude, mean angle of attack and frequency of oscillation on the propulsive characteristics of a harmonically oscillating cambered airfoil at Reynolds number of 5×104. The flow field around the foil is analyzed to study the influence of the above parameters and to understand the reasons behind the positive thrust force generation. It is observed that the instantaneous force coefficients of the airfoil vary both qualitatively and quantitatively with respect to change in the above-mentioned parameters. A transition of wake from Karman vortex to reverse Karman vortex is observed. It is also observed that the formation and convection of the leading edge vortex over the airfoil surface has a strong impact on the drag-thrust transition. It is also noticed that the change in the location of the pitching axis has a significant influence over thrust force generation and propulsion efficiency of the airfoil.

References

1.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
,
1999
, “
Flapping and Flexible Wings for Biological and Micro Air Vehicles
,”
Prog. Aerospace Sci.
,
35
(
5
), pp.
455
505
.10.1016/S0376-0421(98)00016-5
2.
Lee
,
T.
, and
Su
,
Y.
,
2015
, “
Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion
,”
ASME J. Fluids Eng.
,
137
(
5
), p. 051105.10.1115/1.4029443
3.
Siala
,
F. F.
,
Totpal
,
A. D.
, and
Liburdy
,
J. A.
,
2016
, “
Characterization of Vortex Dynamics in the Near Wake of an Oscillating Flexible Foil
,”
ASME J. Fluids Eng.
,
138
(
10
), p. 101202.10.1115/1.4033959
4.
Kinsey
,
T.
, and
Dumas
,
G.
,
2012
, “
Optimal Tandem Configuration for Oscillating-Foils Hydrokinetic Turbine
,”
ASME J. Fluids Eng.
,
134
(
3
), p. 031103.10.1115/1.4005423
5.
Boudis
,
A.
,
Bayeul-Lainé
,
A.-C.
,
Benzaoui
,
A.
,
Oualli
,
H.
,
Guerri
,
O.
, and
Coutier-Delgosha
,
O.
,
2019
, “
Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
,”
ASME J. Fluids Eng.
,
141
(
4
), p. 041106.10.1115/1.4042175
6.
Ashraf
,
M.
,
Young
,
J.
, and
Lai
,
J.
,
2011
, “
Reynolds Number, Thickness and Camber Effects on Flapping Airfoil Propulsion
,”
J. Fluids Struct.
,
27
(
2
), pp.
145
160
.10.1016/j.jfluidstructs.2010.11.010
7.
Jones
,
K.
,
Dohring
,
C.
, and
Platzer
,
M.
,
1998
, “
Experimental and Computational Investigation of the Knoller-Betz Effect
,”
AIAA J.
,
36
(
7
), pp.
1240
1246
.10.2514/2.505
8.
Koochesfahani
,
M. M.
,
1989
, “
Vortical Patterns in the Wake of an Oscillating Airfoil
,”
AIAA J.
,
27
(
9
), pp.
1200
1205
.10.2514/3.10246
9.
Ramamurti
,
R.
, and
Sandberg
,
W.
,
2001
, “
Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver
,”
AIAA J.
,
39
(
2
), pp.
253
260
.10.2514/2.1320
10.
Freymuth
,
P.
,
1988
, “
Propulsive Vortical Signature of Plunging and Pitching Airfoils
,”
AIAA J.
,
26
(
7
), pp.
881
883
.10.2514/3.9982
11.
Picard-Deland
,
M.
,
Olivier
,
M.
,
Dumas
,
G.
, and
Kinsey
,
T.
,
2019
, “
Oscillating-Foil Turbine Operating at Large Heaving Amplitudes
,”
AIAA J.
,
57
(
12
), pp.
5104
5113
.10.2514/1.J058505
12.
Samara
,
F.
, and
Johnson
,
D. A.
,
2020
, “
Dynamic Stall on Pitching Cambered Airfoil With Phase Offset Trailing Edge Flap
,”
AIAA J.
,
58
(
7
), pp.
2844
2856
.10.2514/1.J059115
13.
Mueller
,
T. J.
,
2000
, “
Aerodynamic Measurements at Low Reynolds Numbers for Fixed Wing Micro-Air Vehicles
,”
Notre Dame Univ in Department of Aerospace And Mechanical Engineering
, Notre Dame, IN.
14.
Selig
,
M. S.
,
1995
,
Summary of Low Speed Airfoil Data
,
Soartech Publications
, Ann Arbor, MI.
15.
Ferziger
,
J. H.
,
Perić
,
M.
, and
Street
,
R. L.
,
2002
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer
, Heidelberg, Berlin.
16.
Im
,
H.-S.
, and
Zha
,
G.-C.
,
2014
, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High-Order Schemes
,”
ASME J. Fluids Eng.
,
136
(
11
), p. 111104.10.1115/1.4027813
17.
Morton
,
S.
,
Forsythe
,
J.
,
Mitchell
,
A.
, and
Hajek
,
D.
,
2002
, “
Detached-Eddy Simulations and Reynolds-Averaged Navier-Stokes Simulations of Delta Wing Vortical Flowfields
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
924
932
.10.1115/1.1517570
18.
Spalart
,
P. R.
,
1997
, “
Comments on the Feasibility of Les for Wings, and on a Hybrid Rans/Les Approach
,”
Proceedings of First AFOSR International Conference on DNS/LES
,
Greyden Press
, Ruston, LO, Aug. 4–8, pp.
137
147
.https://www.researchgate.net/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach
19.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Review Fluid Mech.
,
41
(
1
), pp.
181
202
.10.1146/annurev.fluid.010908.165130
20.
Borah
,
R.
,
Jain
,
S.
,
Joshi
,
D. V.
, and
Saha
,
U. K.
,
2021
, “
Flow Characterization of Bluff Bodies: A Two-Dimensional Transformation From Square to Triangular Cylinder
,”
ASME J. Fluids Eng.
,
143
(
11
), p. 111302.10.1115/1.4051310
21.
Srinivasan
,
K.
,
Subbarao
,
P.
, and
Kale
,
S.
,
2017
, “
Experimental and Numerical Studies on Gas Flow Through Silicon Microchannels
,”
ASME J. Fluids Eng.
,
139
(
8
), p. 081205.10.1115/1.4036249
22.
Zaheer
,
S. Q.
, and
Disimile
,
P. J.
,
2021
, “
Flow Field Analysis and Nearfield Acoustic Signature Reduction of a Stationary Fan Blade Array
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041203
.10.1115/1.4049116
23.
Li
,
T.
,
Hemida
,
H.
,
Zhang
,
J.
,
Rashidi
,
M.
, and
Flynn
,
D.
,
2018
, “
Comparisons of Shear Stress Transport and Detached Eddy Simulations of the Flow Around Trains
,”
ASME J. Fluids Eng.
,
140
(
11
), p. 111108.10.1115/1.4040672
24.
Kurtulus
,
D. F.
,
2019
, “
Unsteady Aerodynamics of a Pitching NACA 0012 Airfoil at Low Reynolds Number
,”
Int. J. Micro Air Veh.
,
11
, pp. 1–21.10.1177/1756829319890609
25.
Wernert
,
P.
,
Geissler
,
W.
,
Raffel
,
M.
, and
Kompenhans
,
J.
,
1996
, “
Experimental and Numerical Investigations of Dynamic Stall on a Pitching Airfoil
,”
AIAA J.
,
34
(
5
), pp.
982
989
.10.2514/3.13177
26.
Spentzos
,
A.
,
Barakos
,
G.
,
Badcock
,
K.
,
Richards
,
B.
,
Wernert
,
P.
,
Schreck
,
S.
, and
Raffel
,
M.
,
2005
, “
Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics
,”
AIAA J.
,
43
(
5
), pp.
1023
1033
.10.2514/1.8830
27.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2010
, “
Numerical Investigations on Dynamic Stall of Low Reynolds Number Flow Around Oscillating Airfoils
,”
Comput. Fluids
,
39
(
9
), pp.
1529
1541
.10.1016/j.compfluid.2010.05.004
28.
Li
,
X.
,
Grecov
,
D.
,
Guo
,
Z.
, and
Hou
,
Z.
,
2019
, “
Influence of Unsteady and Kinematic Parameters on Aerodynamic Characteristics of a Pitching Airfoil
,”
J. Aerosp. Eng.
,
32
(
1
), p.
04018120
.10.1061/(ASCE)AS.1943-5525.0000944
You do not currently have access to this content.