Abstract

Equivalent sand grain roughness is required for estimating friction factor for engineering applications from empirical relation via Haalands equation. The real surfaces are different from the sand grain profile. The correlations for friction factor were derived from the use of discrete roughness elements with regular shapes such as cones and bars. The purpose of the paper is to derive the analytical expression of friction factor for a two-dimensional (2D) semicylindrical roughness (not exactly a three-dimensional (3D) sand grain but for the circular profile of cross-section) using Navier–Stokes equation and mixing length theory. This is compared with the modified series mathematical representation of Haalands equation for friction factor in terms of equivalent sand grain roughness. The comparison is valid for a high Reynolds number where the velocity profile is almost flat beyond the boundary layer and approximately linear all throughout the boundary layer. The high Reynolds number approximation for Haalands equation is derived and the series form of the friction factor compares approximately with the series form derived from first principles, where in the exponents of the series expansion are close.

References

1.
Bons
,
J. P.
,
2002
, “
St and CF Augmentation for Real Turbine. Roughness With Elevated Free Stream Turbulence
,”
Trans. ASME
,
124
(
4
), pp.
632
644
.10.1115/1.1505851
2.
Nikuradse
,
J.
,
1933
,
Laws of Flow in Rough Pipes
,
National Advisory Committee on Aeronautics
, Washington, DC, Report No. NACA TM 1292.
3.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
60
65
.10.1115/1.3242406
4.
Moody
,
L. F.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
, pp.
671
684
.
5.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transitional Region Between Smooth and Rough Wall Laws
,”
J. Inst. Civ. Eng.
,
11
(
4
), pp.
133
156
.10.1680/ijoti.1939.13150
6.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), pp.
1
10
.10.1115/1.4001492
7.
Dvorak
,
F. A.
,
1969
, “
Calculation of Turbulent Boundary Layers on Rough Surfaces in Pressure Gradients
,”
AIAA J.
,
7
(
9
), pp.
1752
1759
.10.2514/3.5386
8.
Dirling
,
R. B.
,
1973
, “
A Method for Computing Rough Wall Heat Transfer Rates on Re-Entry Nose Tips
,”
AIAA
Paper No. 73-763.10.2514/6.73-763
9.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effects on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.10.2514/3.10427
10.
Van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
,
2002
, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
671
677
.10.1115/1.1486222
11.
Ryu
,
D. N.
,
Choi
,
D. H.
, and
Patel
,
V. C.
,
2007
, “
Analysis of Turbulent Flow in Channels Roughened by Two-Dimensional Ribs and Three-Dimensional Blocks. Part I: Resistance
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1098
1111
.10.1016/j.ijheatfluidflow.2006.11.006
12.
Kurose
,
R.
, and
Komori
,
S.
,
2001
, “
Turbulence Structure Over a Particle Roughness
,”
Int. J. Multiphase Flow
,
27
(
4
), pp.
673
683
.10.1016/S0301-9322(00)00044-6
13.
Ashrafian
,
A.
,
Andersson
,
H. I.
, and
Manhart
,
M.
,
2004
, “
DNS of Turbulent Flow in a Rod-Roughened Channel
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
373
383
.10.1016/j.ijheatfluidflow.2004.02.004
14.
Antonia
,
R. A.
, and
Krogstad
,
P. A.
,
2001
, “
Turbulence Structure in Boundary Layers Over Different Types of Surface Roughness
,”
Fluid Dyn. Res.
,
28
(
2
), pp.
139
157
.10.1016/S0169-5983(00)00025-3
15.
Napoli
,
E.
,
Armenio
,
V.
, and
De Marchis
,
D. M.
,
2008
, “
The Effect of the Slope of Irregularly Distributed Roughness Elements on Turbulent Wall-Bounded Flows
,”
J. Fluid Mech.
,
613
, pp.
385
394
.10.1017/S0022112008003571
16.
Schultz
,
M. P.
, and
Flack
,
K. A.
,
2009
, “
Turbulent Boundary Layers on a Systematically-Varied Rough Wall
,”
Phys. Fluids
,
21
(
1
), p.
015104
.10.1063/1.3059630
17.
Taylor
,
R. P.
,
1983
, “
A Discrete Element Prediction Approach for Turbulent Flow Over Rough Surfaces
,” Ph.D. dissertation,
Department of Mechanical and Nuclear Engineering, Mississippi State University
, Starkville, MS.
18.
Bons
,
J. P.
,
McClain
,
S. T.
,
Wang
,
Z. J.
,
Chi
,
X.
, and
Shih
,
T. I.
,
2008
, “
A Comparison of Approximate Versus Exact Geometrical Representations of Roughness for CFD Calculations of CF and St
,”
ASME J. Turbomach.
,
130
(
2
), pp.
1
10
.10.1115/1.2752190
19.
Aupoix
,
B.
,
2016
, “
Revisiting the Discrete Element Method for Predictions of Flows Over Rough Surfaces
,”
ASME J. Fluids Eng.
,
138
(
3
), pp.
1
9
.10.1115/1.4031558
20.
Botros
,
K. K.
,
2016
, “
Experimental Investigation Into the Relationship Between the Roughness Height in Use With Nikuradse or Colebrook Roughness Functions and the Internal Wall Roughness Profile for Commercial Steel Pipes
,”
ASME J. Fluids Eng.
,
138
(
8
), p. 081202.10.1115/1.4032601
21.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlic
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Towards a Universal Roughness Correlation
,”
ASME J. Fluids Eng.
,
139
(
12
), p. 121201.10.1115/1.4037280
22.
White
,
F. M.
,
1999
,
Fluid Mechanics
,
McGraw-Hill International Edition
, Singapore.
You do not currently have access to this content.