Abstract

This is the first part of a two-part paper focusing on the flow instabilities of pump turbines. In this first part, results of the experiments and computational fluid dynamics (CFD) simulations of the research carried out on a low specific speed model pump turbine at HSLU (Lucerne University of Applied Sciences) Switzerland are presented. The requirements of a stable and reliable pump turbine operation, under continuously expanding operating ranges, challenge the hydraulic design and demand new developments. This paper presents the results of experimental (model pump turbine at the test rig) and numerical (CFD) investigations of the pump turbine instabilities of a low specific speed (nq = 25) pump turbine in the turbine operating mode. Four-quadrant characteristics of a low specific speed pump turbine with two similar runners differentiating in the size (diameter) are measured. Testing of both runners with the same guide vane system provided information about the effects of the increased vaneless space on the pump turbine performance and stability. A CFD methodology is developed by applying several turbulence models to accurately predict the characteristics of the reversible pump turbines in the S-shaped region (speed no load conditions) as well as to analyze the flow features especially at off-design conditions. This CFD model is validated against the experimental data at 6 deg and 18 deg guide vane openings in turbine operating mode. Using the data of the unsteady pressure measurements and detailed investigation of unstable ranges on the pump turbine characteristics, flow instabilities in the low-specific speed model pump turbine are analyzed. Relevant frequencies such as rotating stall, steady and unsteady vortex formations are determined.

References

1.
Yang
,
J.
,
Pavesi
,
G.
,
Yuan
,
S.
,
Cavazzini
,
G.
, and
Ardizzon
,
G.
,
2015
, “
Experimental Characterization of a Pump Turbine in Pump Mode at Hump Instability Region
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051109
.10.1115/1.4029572
2.
Yang
,
J.
,
Pavesi
,
G.
,
Liu
,
X.
,
Xie
,
T.
, and
Liu
,
J.
,
2018
, “
Unsteady Flow Characteristics Regarding Hump Instability in the First Stage of a Multistage Pump Turbine in Pump Mode
,”
Renewable Energy
,
127
, pp.
377
385
.10.1016/j.renene.2018.04.069
3.
Liu
,
J.
,
Liu
,
S.
,
Sun
,
Y.
,
Wu
,
W. L.
, and
Wang
,
L. Q.
,
2012
, “
Numerical Study of Vortex Rope During Load Rejection of a Prototype Pump Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
3
), p.
032044
.10.1088/1755-1315/15/3/032044
4.
Yasuda
,
M.
, and
Watanabe
,
S.
,
2016
, “
How to Avoid Severe Incidents at Pumped Storage Power Plants
,”
IOP Conf. Series Earth Environ. Sci.
,
49
, p.
112002
.10.1088/1755-1315/49/11/112002
5.
Pejovic
,
S.
,
Karney
,
B. W.
, and
Gajic
,
A.
,
2011
, “
Analysis of Pump Turbine S Instability and Reverse Water Hammer Incidents in Hydropower Systems
,”
Fourth International Meeting on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems
, Belgrade, Serbia, Oct. 26–28.https://www.researchgate.net/profile/Aleksandar-Gajic/publication/254994729_Analysis_of_Pump-Turbine_S_Instability_and_Reverse_Waterhammer_Incidents_in_Hydropower_Systems/links/544895b60cf2d62c3052aaff/Analysisof-Pump-Turbine-S-Instability-and-Reverse-Waterhammer-Incidents-in-Hydropower-Systems.pdf
6.
Pejovic
,
S.
,
Krsmanovic
,
L.
,
Jemcov
,
R.
, and
Crnkovic
,
P.
,
1976
, “
Unstable Operation of High-Head Reversible Pump Turbines
,”
Proceedings of the Eighth IAHR Symposium on Hydraulic Machinery and Cavitation
, Leningrad, pp.
283
295
.
7.
Zhang
,
Y.
,
Zhang
,
Y.
, and
Wu
,
Y.
,
2017
, “
A Review of Rotating Stall in Reversible Pump Turbine
,”
Proc. Inst. Mech. Eng. Part C J Mech. Eng. Sci.
,
231
(
7
), pp.
1181
1204
.10.1177/0954406216640579
8.
Widmer
,
C.
,
Staubli
,
T.
, and
Ledergerber
,
N.
,
2011
, “
Unstable Characteristics and Rotating Stall in Turbine Brake Operation of Pump Turbines
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041101
.10.1115/1.4003874
9.
Staubli
,
T.
,
Senn
,
F.
, and
Sallaberger
,
M.
,
2008
, “
Instability of Pump Turbines During Start-Up in Turbine Mode
,”
HYDRO Progressing World Hydro Development Conference Ljubljana
, Slovenia, Paper No. 9.
10.
Li
,
D.
,
Zuo
,
Z.
,
Wang
,
H.
,
Liu
,
S.
,
Wei
,
X.
, and
Qin
,
D.
,
2019
, “
Review of Positive Slopes on Pump Performance Characteristics of Pump Turbines
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
901
916
.10.1016/j.rser.2019.06.036
11.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
965
974
.10.1016/j.rser.2014.09.011
12.
Zuo
,
Z.
,
Fan
,
H.
,
Liu
,
S.
, and
Wu
,
Y.
,
2016
, “
S-Shaped Characteristics on the Performance Curves of Pump Turbines in Turbine Mode – A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
836
85
.10.1016/j.rser.2015.12.312
13.
Deniz
,
S.
,
Del Rio
,
A.
, and
Casartelli
,
E.
,
2019
, “
Experimental and Numerical Investigation of the Speed-No-Load Instability of a Low Specific Speed Pump Turbine With Focus on the Influence of Turbulence Models
,”
IOP Conf. Ser.
,
240
(
8
), p.
082005
.10.1088/1755-1315/240/8/082005
14.
Casartelli
,
E.
,
Mangani
,
L.
,
Romanelli
,
G.
, and
Staubli
,
T.
,
2014
, “
Transient Simulation of Speed-No Load Conditions With an Open-Source Based C++ Code
,”
IOP Conf. Ser.
,
22
(
3
), p.
032029
.10.1088/1755-1315/22/3/032029
15.
Casartelli
,
E.
,
Mangani
,
L.
,
Ryan
,
O.
, and
Schmid
,
A.
,
2016
, “
Application of Transient CFD-Procedures for S-Shape Computation in Pump Turbines With and Without FSI
,”
IOP Conf. Series: Earth Environ. Sci.
, 49, p. 042008.10.1088/1755-1315/49/4/042008
16.
Yan
,
J. P.
,
Seidel
,
U.
, and
Koutnik
,
J.
,
2012
, “
Numerical Simulation of Hydrodynamics in a Pump Turbine at Off-Design Operating Conditions in Turbine Mode
,”
IOP Conf. Series: Earth Environ. Sci.
, 15, p.
032041
.10.1088/1755-1315/15/3/032041
17.
Wang
,
L.
,
Yin
,
J.
,
Jiao
,
L.
,
Wu
,
D.
, and
Qin
,
D.
,
2011
, “
Numerical Investigation on the “S” Characteristics of a Reduced Pump Turbine Model
,”
Sci. China Technol. Sci.
,
54
(
5
), pp.
1259
1266
.10.1007/s11431-011-4295-2
18.
Jacquet
,
C.
,
Fortes-Patella
,
R.
,
Balarac
,
L.
, and
Houdeline
,
J. B.
,
2016
, “
CFD Investigation of Complex Phenomena in S-Shape Region of Reversible Pump Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
4
), p.
042010
.10.1088/1755-1315/49/4/042010
19.
Von Burg
,
M.
,
Deniz
,
S.
,
Staubli
,
T.
, and
Del Rio
,
A.
,
2019
, “
A Simple Method for PIV and Flow Observations in the Guide Vane Channels of a Model Pump Turbine
,”
HYDRO 2019, International Conference and Exhibition Porto, Portugal, Oct., Paper No. 04.01.
20.
Simpson
,
A. T.
,
Spence
,
S. W. T.
, and
Watterson
,
J. K.
,
2013
, “
Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space and Vane Solidity in Radial Turbine Stators
,”
ASME J. Turbomach.
,
135
(
3
), p.
031001
.10.1115/1.4007525
21.
Rodgers
,
C.
, and
Sapiro
,
L.
,
1972
, “
Design Considerations for High Pressure Ratio Centrifugal Compressors
,”
ASME
Paper No. 72-GT-91.10.1115/72-GT-91.10
22.
Abbas
,
A.
, and
Kumar
,
A.
,
2019
, “
Evaluation of Uncertainty in Flow and Performance Parameters in Francis Turbine Test Rig
,”
Flow Meas. Instrum.
,
65
, pp.
297
308
.10.1016/j.flowmeasinst.2019.01.009
23.
Liu
,
J.
,
Liu
,
S.
,
Wu
,
Y.
,
Sun
,
Y.
, and
Zuo
,
Z.
,
2012
, “
Prediction of “S” Characteristics of a Pump Turbine With Small Opening Based on V2F Model
,”
Int. J. Mod. Phys. Conf. Ser.
,
19
, pp.
417
423
.10.1142/S2010194512009014
24.
Lenarcic
,
M.
,
Bauer
,
C.
,
Giese
,
M.
, and
Jung
,
A.
,
2016
, “
Prediction of S-Shaped Characteristics in Reversible Pump Turbines Using Different Numerical Approaches
,”
IOP Conf. Ser..
,
49
(
4
), p.
042009
.10.1088/1755-1315/49/4/042009
25.
Xiao
,
Y.
,
Zhu
,
W.
,
Wang
,
Z.
,
Zhang
,
J.
,
Zeng
,
C.
, and
Yao
,
Y.
,
2016
, “
Analysis of the Internal Flow Behavior on S-Shaped Region of a Francis Pump Turbine on Turbine Mode
,”
Eng. Comput.
,
33
(
2
), pp.
543
561
.10.1108/EC-04-2015-0084
26.
Guo
,
L.
,
Liu
,
J. T.
,
Wang
,
L. Q.
,
Jiao
,
L.
, and
Li
,
Z. F.
,
2012
, “
Numerical Analysis on Pump Turbine Runaway Points
,”
IOP Conf. Ser.
,
15
(
4
), p.
042017
.10.1088/1755-1315/15/4/042017
27.
Xia
,
L.
,
Cheng
,
Y.
,
You
,
J.
,
Zhang
,
X.
,
Yang
,
J.
, and
Qian
,
Z.
,
2017
, “
Mechanism of the S-Shaped Characteristics and the Runaway Instability of Pump Turbines
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031101
.10.1115/1.4035026
28.
Sun
,
H.
,
Xiao
,
R.
,
Wang
,
F.
,
Xiao
,
Y.
, and
Liu
,
W.
,
2015
, “
Analysis of the Pump Turbine S Characteristics Using the Detached Eddy Simulation Method
,”
Chin. J. Mech. Eng.
,
28
(
1
), pp.
115
122
.10.3901/CJME.2014.1021.159
29.
Xia
,
L.
,
Cheng
,
Y.
,
Yang
,
Z.
,
You
,
J.
,
Yang
,
J.
, and
Qian
,
Z.
,
2017
, “
Evolutions of Pressure Fluctuations and Runner Loads During Runaway Processes of a Pump Turbine
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091101
.10.1115/1.4036248
30.
Mangani
,
L.
,
Buchmayr
,
M.
, and
Darwish
,
M.
,
2014
, “
Development of a Novel Fully Coupled Solver in Openfoam: Steady-State Incompressible Turbulent Flows in Rotational Reference Frames
,”
Numer. Heat Transfer B
,
66
(
1
), pp.
1
20
.10.1080/10407790.2014.894448
31.
Khalil
,
I. M.
,
Tabakoff
,
W.
, and
Hamed
,
A.
,
1976
, “
Losses in Radial Inflow Turbines
,”
ASME
Paper No. 7-FE-9.
32.
Sun
,
Y. K.
,
Zuo
,
Z. G.
,
Liu
,
S. H.
,
Wu
,
Y. L.
, and
Liu
,
J. T.
,
2012
, “
Numerical Simulation of the Influence of Distributor Pitch Diameter on Performance and Pressure Fluctuations in a Pump Turbine
,”
IOP Conf. Ser.
,
15
(
7
), p.
072037
.10.1088/1755-1315/15/7/072037
33.
Arndt
,
N.
,
Acosta
,
A.
,
Brennen
,
C.
, and
Caughey
,
T.
,
1990
, “
Experimental Investigation of Rotor Stator Interaction in a Centrifugal Pump With Several Vaned Diffusers
,”
ASME J. Turbomach.
,
112
(
1
), pp.
98
108
.10.1115/1.2927428
34.
Watanabe
,
I.
,
Ariga
,
I.
, and
Mashimo
,
T.
,
1971
, “
Effect of Dimensional Parameters of Impellers on Performance Characteristics of a Radial-Inflow Turbine
,”
ASME J. Eng. Gas Turbines Power
,
93
(
1
), pp. 81–102.10.1115/1.3445411
35.
Robinson
,
C.
,
Casey
,
M.
,
Hutchinson
,
B.
, and
Steed
,
R.
,
2012
, “
Impeller-Diffuser Interaction in Centrifugal Compressors
,”
ASME
Paper No. GT2012-69151.10.1115/GT2012-69151
36.
Meng
,
Y. R.
,
Xiong
,
L. Y.
,
Liu
,
L. Q.
,
Peng
,
N.
,
Ke
,
C. L.
,
Li
,
K. R.
, and
Wang
,
H. R.
,
2017
, “
Numerical Study of the Performance Effect of Varying Vaneless Space in Helium Turboexpander Nozzles
,”
IOP Conf. Ser.
,
171
, p.
012025
.10.1088/1757-899X/171/1/012025
37.
Smirnov
,
P. E.
,
Hansen
,
T.
, and
Menter
,
F. R.
,
2007
, “
Numerical Simulation of Turbulent Flows in Centrifugal Compressor Stages With Different Radial Gaps
,”
ASME
Paper No. GT2007-27376.10.1115/GT2007-27376
38.
Sato
,
K.
,
1999
, “
Blade Row Interaction in Radial Turb-Machines
,” Ph.D. thesis,
Durham University
,
UK
.
39.
Lenarcic
,
M.
, and
Gehrer
,
A.
,
2019
, “
A Theoretical, Numerical and Experimental Analysis of S-Shape Instabilities in Reversible Pump Turbines: Resultant Strategies for Improving Operational Stability
,”
IOP Conf. Ser.
,
240
, p.
032023
.10.1088/1755-1315/240/3/032023
40.
Zhang
,
W.
,
Che
,
Z.
,
Zhu
,
B.
, and
Zhang
,
F.
,
2020
, “
Pressure Fluctuation and Flow Instability in S-Shaped Region of a Reversible Pump Turbine
,”
Renewable Energy
,
154
, pp.
826
840
.10.1016/j.renene.2020.03.069
41.
Xia
,
L.-S.
,
Cheng
,
Y.-G.
,
Yang
,
J.-D.
, and
Cai
,
F.
,
2019
, “
Evolution of Flow Structures and Pressure Fluctuations in the S-Shaped Region of a Pump Turbine
,”
J. Hydraul. Res.
,
57
(
1
), pp.
107
112
.10.1080/00221686.2018.1459893
42.
Casartelli
,
E.
,
Mangani
,
L.
,
Del Rio
,
A.
, and
Schmid
,
A.
,
2019
, “
Capturing S-Shape of Pump Turbines by CFD Simulations Using an Anisotropic Turbulence Model
,”
ASME J. Fluids Eng.
, 144(2), p. 021203.10.1115/1.4051809
You do not currently have access to this content.