Abstract

Arrays of flexible polymer piezoelectric film cantilevers that mimic grass or leaves is a prospective idea for harvesting wind energy in urban areas, where the use of traditional technologies is problematic due to low wind velocities. Conversion of this idea into an economically attractive technology depends on various factors including the shape and dimensions of individual films to maximize generated power and to minimize associated costs of production, operation, and maintenance. The latter requirement can be satisfied with rectangular films undergoing flutter in ambient air. Flexible piezoelectric films that displace due to low forces and can convert mechanical energy into electrical energy are ideal for this application. The goal of the presented study is to determine the key dimensions of the piezoelectric film to enhance generated power within the wind range characteristic for urban areas from 1.3 to 7.6 m/s. For this purpose, experiments were conducted in a wind tunnel using piezoelectric polymer films of polyvinylidine fluoride with the length, width, and thickness varying in the ranges of 32–150, 16–22, and 40–64 μm, respectively. Voltage and power outputs for individual samples were measured at wind speeds ranging from 0.5 to 16.5 m/s. Results demonstrated that a single film could produce up to 0.74 nW and that the optimal film dimensions are 63 mm × 22 mm × 40 μm (from considered samples) for the wind energy harvesting in urban areas. Further improvement in power production can be expected when using films with reduced thickness, low elastic modulus, and increased length, and by assembling films in arrays.

References

1.
Jose
,
Z.
,
Michael
,
D.
,
Patrick
,
G.
,
Ananthan
,
S.
,
Lantz
,
E.
,
Cotrell
,
J.
,
2015
. Enabling wind power nationwide. U.S. Department of Energy. https://www.energy.gov/sites/prod/_les/2015/05/f22/Enabling%20Wind%20Power%20Nationwide 18MAY2015 FINAL.pdf
2.
André
,
D.
,
Grove
,
J.
,
Grossman
,
L.
,
Moynihan
,
S.
, and
Raker
,
J.
,
2006
. Community Wind: An Oregon Guidebook. Prepared for the Energy Trust of Oregon by the Northwest Sustainable Energy. https://www.energytrust.org/wp-content/uploads/2016/10/cwpgcommwindguidebook.pdf
3.
Bornstein
,
R. D.
, and
Johnson
,
D. S.
,
1977
, “
Urban-Rural Wind Velocity Differences
,”
Atmos. Environ. (1967)
,
11
(
7
), pp.
597
604
.10.1016/0004-6981(77)90112-3
4.
Frazer
,
R. A.
,
1929
, “
The Flutter of Aeroplane Wings
,”
Aeronaut. J.
,
33
(
222
), pp.
407
454
.10.1017/S0368393100132614
5.
Baumhauer A. G
,
V.
, and
Koning
,
C.
,
1923
. On the Stability of Oscillations of an Airplane Wing. NACA Technical Memorandum No. 223, August 1923. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930084621.pdf
6.
Akaydin
,
H.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2012
, “
The Performance of a Self-Excited Fluidic Energy Harvester
,”
Smart Mater. Struct.
,
21
(
2
), p.
025007
.10.1088/0964-1726/21/2/025007
7.
Akaydin
,
H. D.
,
Elvin
,
N.
, and
Andreopoulos
,
Y.
,
2010
, “
Energy Harvesting From Highly Unsteady Fluid Flows Using Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
21
(
13
), pp.
1263
1278
.10.1177/1045389X10366317
8.
Bae
,
J.
,
Lee
,
J.
,
Kim
,
SMin.
,
Ha
,
J.
,
Lee
,
B.-S.
,
Park
,
YJun.
,
Choong
,
C.
,
Kim
,
J.-B.
,
Wang
,
Z. L.
,
Kim
,
H.-Y.
,
Park
,
J.-J.
, and
Chung
,
U.-I.
,
2014
, “
Flutter-Driven Triboelectrification for Harvesting Wind Energy
,”
Nat. Commun.
,
5
(
1
), pp.
1
9
.10.1038/ncomms5929
9.
Çevik
,
G.
,
Akşit
,
M. F.
, and
Şabanoviç
,
A.
,
2011
, “
Piezoelectric Wind Power Harnessing–an Overview
,”
Proceedings of the SET2011, 10th International Conference on Sustainable Energy Technologies
, Istanbul, Turkey, Sept. 4–7.https://core.ac.uk/download/pdf/11743107.pdf
10.
Hobbs
,
W. B.
, and
Hu
,
D. L.
,
2012
, “
Tree-Inspired Piezoelectric Energy Harvesting
,”
J. Fluids Struct.
,
28
, pp.
103
14
.10.1016/j.jfluidstructs.2011.08.005
11.
Hobeck
,
J.
, and
Inman
,
D.
,
2012
, “
Artificial Piezoelectric Grass for Energy Harvesting From Turbulence-Induced Vibration
,”
Smart Mater. Struct.
,
21
(
10
), p.
105024
.10.1088/0964-1726/21/10/105024
12.
Hobeck
,
J. D.
, Energy Harvesting with Piezoelectric Grass for Autonomous Self-Sustaining Sensor Networks,
2014
.
13.
Hobeck
,
J. D.
,
Geslain
,
D.
, and
Inman
,
D. J.
,
2013
, “
The Dual Cantilever Flutter Phenomenon: A Novel Energy Harvesting Method
,” Proceedings of the SPIE 9061, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aeroscape Systems, April 10, 906113. http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2061051
14.
Kwon
,
S.-D.
,
2010
, “
A T-Shaped Piezoelectric Cantilever for Fluid Energy Harvesting
,”
Appl. Phys. Lett.
,
97
(
16
), p.
164102
.10.1063/1.3503609
15.
Li
,
S.
,
Yuan
,
J.
, and
Lipson
,
H.
,
2011
, “
Ambient Wind Energy Harvesting Using Cross-Flow Fluttering
,”
J. Appl. Phys.
,
109
(
2
), p.
026104
.10.1063/1.3525045
16.
McCarthy
,
J.
, Energy capture from ambient flows using piezoelectric flutter harvesters, Ph.D. thesis,
2014
,
RMIT University,
Melbourne, Australia.
17.
McCarthy
,
J.
,
Deivasigamani
,
A.
,
John
,
S.
,
Watkins
,
S.
,
Coman
,
F.
, and
Petersen
,
P.
,
2013
, “
Downstream Flow Structures of a Fluttering Piezoelectric Energy Harvester
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
279
290
.10.1016/j.expthermflusci.2013.08.010
18.
Morris
,
D. L.
, Wind generated electricity using flexible piezoelectric materials, M.S. thesis,
2010
,
The University of Minnesota, Minneapolis, MN
.
19.
Sward
,
J.
,
Scott
,
P. C.
,
Wayne
,
P.
,
Jackson
,
N.
,
Vorobieff
,
P.
,
Lumia
,
R.
, and
Poroseva
,
S. V.
,
2020
, “
Harvesting Energy From an Ionic Polymer–Metal Composite in a Steady Air Flow
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081204
.10.1115/1.4046801
20.
Vatansever
,
D.
,
Hadimani
,
R.
,
Shah
,
T.
, and
Siores
,
E.
,
2011
, “
An Investigation of Energy Harvesting from Renewable Sources With PVDF and PZT
,”
Smart Mater. Struct.
,
20
(
5
), p.
055019
.10.1088/0964-1726/20/5/055019
21.
Wang
,
W.
,
He
,
X.
,
Wang
,
X.
,
Wang
,
M.
, and
Xue
,
K.
,
2018
, “
A Bioinspired Structure Modification of Piezoelectric Wind Energy Harvester Based on the Prototype of Leaf Veins
,”
Sens. Actuators A: Phys.
,
279
, pp.
467
473
.10.1016/j.sna.2018.06.059
22.
Weinstein
,
L. A.
,
Cacan
,
M. R.
,
So
,
P.
, and
Wright
,
P.
,
2012
, “
Vortex Shedding Induced Energy Harvesting From Piezoelectric Materials in Heating, Ventilation and Air Conditioning Flows
,”
Smart Mater. Struct.
,
21
(
4
), p.
045003
.10.1088/0964-1726/21/4/045003
23.
Zhao
,
L.
, and
Yang
,
Y.
,
2017
, “
On the Modeling Methods of Small-Scale Piezoelectric Wind Energy Harvesting
,”
Smart Struct. Syst.
,
19
(
1
), pp.
67
90
.10.12989/sss.2017.19.1.067
24.
Naudascher
,
E.
, and
Rockwell
,
D.
,
1994
,
Flow-Induced Vibrations: An Engineering Guide
,
A.A. Balkema
,
Rotterdam; Brookfield, VT
.
25.
Carroll
,
C. B.
, 2002, Energy harvesting eel. Google Patents.
26.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p.
035005
.10.1088/0964-1726/21/3/035005
27.
Olszewski
,
O. Z.
,
Houlihan
,
R.
,
Blake
,
A.
,
Mathewson
,
A.
, and
Jackson
,
N.
,
2017
, “
Evaluation of Vibrational PiezoMEMS Harvester That Scavenges Energy From a Magnetic Field Surrounding an AC Current-Carrying Wire
,”
J. Microelectromech. Syst.
,
26
(
6
), pp.
1298
1305
.10.1109/JMEMS.2017.2731400
28.
Fei
,
F.
,
Zhou
,
S.
,
Mai
,
J. D.
, and
Li
,
W. J.
,
2014
, “
Development of an Indoor Airflow Energy Harvesting System for Building Environment Monitoring
,”
Energies
,
7
(
5
), pp.
2985
3003
.10.3390/en7052985
29.
Jackson
,
N.
,
Kumar
,
K.
,
Olszewski
,
O.
,
Schenning
,
A. P.
, and
Debije
,
M. G.
,
2019
, “
Tuning MEMS Cantilever Devices Using Photoresponsive Polymers
,”
Smart Mater. Struct.
,
28
(
8
), p.
085024
.10.1088/1361-665X/aad013
30.
Jackson
,
N.
,
Olszewski
,
O. Z.
,
O'Murchu
,
C.
, and
Mathewson
,
A.
,
2017
, “
Shock-Induced Aluminum Nitride Based MEMS Energy Harvester to Power a Leadless Pacemaker
,”
Sens. Actuators A: Phys.
,
264
, pp.
212
8
.10.1016/j.sna.2017.08.005
31.
Jackson
,
N.
,
Olszewski
,
O. Z.
,
O'Murchu
,
C.
, and
Mathewson
,
A.
,
2018
, “
Ultralow-Frequency PiezoMEMS Energy Harvester Using Thin-Film Silicon and Parylene Substrates
,”
J. Micro/Nanolithography, MEMS, MOEMS
,
17
(
1
), p.
1
.10.1117/1.JMM.17.1.015005
32.
Liu
,
H.
,
Tay
,
C. J.
,
Quan
,
C.
,
Kobayashi
,
T.
, and
Lee
,
C.
,
2011
, “
Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power
,”
J. Microelectromech. Syst.
,
20
(
5
), pp.
1131
1142
.10.1109/JMEMS.2011.2162488
33.
Jackson
,
N.
,
Keeney
,
L.
, and
Mathewson
,
A.
,
2013
, “
Flexible-CMOS and Biocompatible Piezoelectric AlN Material for MEMS Applications
,”
Smart Mater. Struct.
,
22
(
11
), p.
115033
.10.1088/0964-1726/22/11/115033
34.
Jackson
,
N.
, and
Mathewson
,
A.
,
2017
, “
Enhancing the Piezoelectric Properties of Flexible Hybrid AlN Materials Using Semi-Crystalline Parylene
,”
Smart Mater. Struct.
,
26
(
4
), p.
045005
.10.1088/1361-665X/aa5d99
35.
Ramadan
,
K. S.
,
Sameoto
,
D.
, and
Evoy
,
S.
,
2014
, “
A Review of Piezoelectric Polymers as Functional Materials for Electromechanical Transducers
,”
Smart Mater. Struct.
,
23
(
3
), p.
033001
.10.1088/0964-1726/23/3/033001
36.
Shan
,
X.
,
Tian
,
H.
,
Chen
,
D.
, and
Xie
,
T.
,
2019
, “
A Curved Panel Energy Harvester for Aeroelastic Vibration
,”
Appl. Energy
,
249
, pp.
58
66
.10.1016/j.apenergy.2019.04.153
37.
Zhang
,
J.
,
Zhang
,
J.
,
Shu
,
C.
, and
Fang
,
Z.
,
2017
, “
Enhanced Piezoelectric Wind Energy Harvesting Based on a Buckled Beam
,”
Appl. Phys. Lett.
,
110
(
18
), p.
183903
.10.1063/1.4982967
38.
Connell
,
B. S.
, and
Yue
,
D. K.
,
2007
, “
Flapping Dynamics of a Flag in a Uniform Stream
,”
J. Fluid Mech.
,
581
, pp.
33
67
.10.1017/S0022112007005307
You do not currently have access to this content.