Abstract

Negative flow from the outlet through the volute, diffuser, and impeller to the inlet of the centrifugal compressor can occur continuously as a result of system accidents. A physical comprehension of negative flow dynamics is crucial in evaluating the compressor characteristics under abnormal working conditions and is also important in exploring the compressor aerodynamics over the entire flow range. However, limited research on the negative flow dynamics in centrifugal compressors, particularly with the consideration of vaned diffusers and volutes, can be found. This study aims to determine the compressor characteristics, including the negative flow rates of a centrifugal compressor, and to clarify the negative flow mechanism under the interaction of the volute, diffuser, and impeller. The last stage of a four-stage centrifugal compressor, including an internal volute, a vaned diffuser, and a closed impeller, was simulated under both positive and negative flow conditions using a computational fluid dynamics (CFD) model. The results show that the pressure ratio–negative flow characteristic is almost matched with a parabolic curve. At negative flow rates, the backflow generated on the hub and shroud sides in the impeller expands upstream and causes flow separation in the diffuser. The negative flow enters the impeller at a large incidence angle and results in jet-wall impingement on the pressure surface, flow spillage over the trailing edge, and flow separation near the suction surface. The impeller partially acts as a turbine impeller and performs negative work on the fluid. This work is of scientific significance to enrich the compressor aerodynamics in accident scenarios and of engineering value to improve the advanced design of compressor protection systems.

References

1.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.10.1115/1.3241725
2.
Belardini
,
E.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
, and
Pelella
,
M.
,
2016
, “
2nd Quadrant Centrifugal Compressor Performance—Part I
,”
ASME
Paper No. GT2016-57117.10.1115/GT2016-57117
3.
Thoma
,
D.
, and
Kittredge
,
C. P.
,
1931
, “
Centrifugal Pumps Operated Under Abnormal Conditions
,”
Power
,
73
, pp.
881
884
.
4.
Knapp
,
R. T.
,
1937
, “
Complete Characteristics of Centrifugal Pumps and Their Use in the Prediction of Transient Behavior
,”
Trans. ASME
,
59
, pp.
683
689
.
5.
Turner
,
R. C.
, and
Sparkes
,
D. W.
,
1963
, “
Complete Characteristics for a Single Stage Axial Flow Fan
,”
Inst. Mech. Eng.
,
178
(
9
), pp.
14
27
.10.1243/PIME_CONF_1963_178_213_02
6.
Bammert
,
K.
, and
Zehner
,
P.
,
1978
, “
Measurements of the Performance of an Air Turbine Stage at Positive and Negative Mass Flow and Rotational Speed (Four-Quadrant Characteristics)
,”
ASME J. Eng. Power
,
100
(
1
), pp.
22
29
.10.1115/1.3446319
7.
Bammert
,
K.
, and
Zehner
,
P.
,
1980
, “
Measurements of the Four-Quadrant Characteristics on a Multi-Stage Turbine
,”
ASME J. Eng. Power
,
102
(
2
), pp.
316
321
.10.1115/1.3230254
8.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Power
,
98
(
2
), pp.
190
198
.10.1115/1.3446138
9.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Power
,
98
(
2
), pp.
199
211
.10.1115/1.3446139
10.
Gamache
,
R. N.
, and
Greitzer
,
E. M.
,
1990
, “
Reverse Flow in Multistage Axial Compressors
,”
AIAA J. Propul. Power
,
6
(
4
), pp.
461
473
.10.2514/3.25458
11.
Day
,
I.
,
1994
, “
Axial Compressor Performance During Surge
,”
AIAA J. Propul. Power
,
10
(
3
), pp.
329
336
.10.2514/3.23760
12.
Gill
,
A.
,
Von Backström
,
T. W.
, and
Harms
,
T. M.
,
2014
, “
Flow Fields in an Axial Flow Compressor During Four-Quadrant Operation
,”
ASME J. Turbomach.
,
136
(
6
), p.
061007
.10.1115/1.4025594
13.
Koff
,
S.
, and
Greitzer
,
E.
,
1986
, “
Axisymmetrically Stalled Flow Performance for Multistage Axial Compressors
,”
ASME J. Turbomach.
,
108
(
2
), pp.
216
223
.10.1115/1.3262040
14.
Gallar
,
L.
,
Tzagarakis
,
I.
,
Pachidis
,
V.
, and
Singh
,
R.
,
2010
, “
Compressor Performance 2D Modelling at Reverse Flow Conditions
,”
ASME
Paper No. GT2010-23428.10.1115/GT2010-23428
15.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Part I: Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.10.1115/1.3239887
16.
Belardini
,
E.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
, and
Pelella
,
M.
,
2015
, “
Modeling of Pressure Dynamics During Surge and ESD
,”
Third Middle East Turbomachinery Symposium (METS)
, Doha, Qatar, Feb. 16–18, pp.
1
13
.
17.
Munari
,
E.
,
Pinelli
,
M.
,
Brun
,
K.
,
Simons
,
S.
, and
Kurz
,
R.
,
2018
, “
Measurement and Prediction of Centrifugal Compressor Axial Forces During Surge—Part II: Dynamic Surge Model
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012602
.10.1115/1.4037663
18.
Longley
,
J. P.
,
2007
, “
Calculating Stall and Surge Transients
,”
ASME
Paper No. GT2007-27378.10.1115/GT2007-27378
19.
Schoenenborn
,
H.
, and
Breuer
,
T.
,
2012
, “
Aeroelasticity at Reversed Flow Conditions—Part II: Application to Compressor Surge
,”
ASME J. Turbomach.
,
134
(
6
), p.
061031
.10.1115/1.4006309
20.
Righi
,
M.
,
Pachidis
,
V.
, and
Könözsy
,
L.
,
2020
, “
On the Prediction of the Reverse Flow and Rotating Stall Characteristics of High-Speed Axial Compressors Using a Three-Dimensional Through-Flow Code
,”
Aerosp. Sci. Technol.
,
99
, p.
105578
.10.1016/j.ast.2019.105578
21.
Hansen
,
K. E.
,
Jørgensen
,
P.
, and
Larsen
,
P. S.
,
1981
, “
Experimental and Theoretical Study of Surge in a Small Centrifugal Compressor
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
391
395
.10.1115/1.3240796
22.
Mizuki
,
S.
,
Asaga
,
Y.
,
Ono
,
Y.
, and
Tsujita
,
H.
,
2006
, “
Investigation of Surge Behavior in a Micro Centrifugal Compressor
,”
J. Therm. Sci.
,
15
(
2
), pp.
97
102
.10.1007/s11630-006-0097-4
23.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Tiseira
,
A.
,
2008
, “
Experiments and Modelling of Surge in Small Centrifugal Compressor for Automotive Engines
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
818
826
.10.1016/j.expthermflusci.2007.10.001
24.
Wachter
,
J.
, and
Rohne
,
K. H.
,
1984
, “
Centrifugal Compressor Surge Behaviour
,”
ASME
Paper No. 84-GT-91.10.1115/84-GT-91
25.
Theotokatos
,
G.
, and
Kyrtatos
,
N. P.
,
2003
, “
Investigation of a Large High-Speed Diesel Engine Transient Behavior Including Compressor Surging and Emergency Shutdown
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
580
589
.10.1115/1.1559903
26.
Huang
,
Q.
,
Zhang
,
M.
, and
Zheng
,
X.
,
2019
, “
Compressor Surge Based on a One-Dimensional-Three-Dimensional Coupled Method—Part 2: Surge Investigation
,”
Aerosp. Sci. Technol.
,
90
, pp.
289
298
.10.1016/j.ast.2019.04.042
27.
Zhao
,
Y.
,
Xi
,
G.
,
Wang
,
Z.
, and
Zhang
,
P.
,
2020
, “
Numerical Investigation of Deep Surge in a Centrifugal Compressor With Vaned Diffuser and Large Plenum
,”
Proc. Inst. Mech. Eng., Part A
,
234
(
2
), pp.
143
155
.10.1177/0957650919854571
28.
Banerjee
,
D.
,
Dehner
,
R.
,
Selamet
,
A.
, and
Miazgowicz
,
K.
,
2021
, “
Impact of Rotational Speed on Turbocharger Compressor Surge Through Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061501
.10.1115/1.4049838
29.
Tsukamoto
,
K.
,
Okada
,
M.
,
Inokuchi
,
Y.
,
Yamasaki
,
N.
, and
Yamagata
,
A.
,
2017
, “
Measurement and Numerical Simulation of a Small Centrifugal Compressor Characteristics at Small or Negative Flow Rate
,”
J. Therm. Sci.
,
26
(
2
), pp.
107
112
.10.1007/s11630-017-0917-8
30.
Belardini
,
E.
,
Pandit
,
R.
,
Satish
,
K. V. V. N. K.
,
Rubino
,
D. T.
, and
Tapinassi
,
L.
,
2016
, “
2nd Quadrant Centrifugal Compressor Performance—Part II
,”
ASME
Paper No. GT2016-57124.10.1115/GT2016-57124
31.
Qin
,
R.
,
Ju
,
Y.
,
Galloway
,
L.
,
Spence
,
S.
, and
Zhang
,
C.
,
2020
, “
High Dimensional Matching Optimization of Impeller–Vaned Diffuser Interaction for a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
142
(
12
), p.
121004
.10.1115/1.4047898
32.
Qiao
,
B.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2019
, “
Numerical Investigation on Labyrinth Seal Leakage Flow and Its Effects on Aerodynamic Performance for a Multistage Centrifugal Compressor
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071107
.10.1115/1.4042370
33.
NUMECA International
,
2013
, “
NUMECA FINE/Turbo User Manual 9.0
,”
NUMECA International
,
Brussel, Belgium
.
34.
Du
,
Y.
,
Dou
,
H.
, and
Lu
,
F.
,
2020
, “
Counter-Propagating Rotating Stall of Vaned Diffuser in a Centrifugal Compressor Near Design Condition
,”
ASME J. Turbomach.
,
142
(
11
), p.
111007
.10.1115/1.4048604
35.
Dumas
,
M.
,
Vo
,
I. D.
, and
Yu
,
H.
,
2015
, “
Post-Surge Load Prediction for Multi-Stage Compressors Via CFD Simulations
,”
ASME
Paper No. GT2015-42748.10.1115/GT2015-42748
36.
Guo
,
S.
,
Chen
,
H.
,
Zhu
,
X.
, and
Du
,
Z.
,
2011
, “
Numerical Simulation of Surge in Turbocharger Centrifugal Compressor: Influences of Downstream Plenum
,”
ASME
Paper No. GT2011-45163.10.1115/GT2011-45163
37.
Hakimi
,
N.
,
1997
, “
Preconditioning Methods for Time Dependent Navier-Stokes Equations
,” Ph.D. dissertation,
Free University of Brussels
, Brussels, Belgium.
38.
Zhao
,
F.
,
Dodds
,
J.
, and
Vahdati
,
M.
,
2018
, “
Poststall Behavior of a Multistage High Speed Compressor at Off-Design Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121002
.10.1115/1.4041142
39.
Zhang
,
M.
,
Zheng
,
X.
,
Huang
,
Q.
, and
Sun
,
Z.
,
2019
, “
A Novel One-Dimensional–Three-Dimensional Coupled Method to Predict Surge Boundary of Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
7
), p.
071012
.10.1115/1.4042419
40.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
41.
Zamiri
,
A.
,
Lee
,
B. J.
, and
Chung
,
J. T.
,
2017
, “
Numerical Evaluation of Transient Flow Characteristics in a Transonic Centrifugal Compressor With Vaned Diffuser
,”
Aerosp. Sci. Technol.
,
70
, pp.
244
256
.10.1016/j.ast.2017.08.003
42.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part I: Influence on the Performance
,”
ASME J. Turbomach.
,
125
(
1
), pp.
173
182
.10.1115/1.1516814
43.
Ziegler
,
K. U.
,
Gallus
,
H. E.
, and
Niehuis
,
R.
,
2003
, “
A Study on Impeller-Diffuser Interaction—Part II: Detailed Flow Analysis
,”
ASME J. Turbomach.
,
125
(
1
), pp.
183
192
.10.1115/1.1516815
44.
Marelli
,
S.
,
Carraro
,
C.
,
Marmorato
,
G.
,
Zamboni
,
G.
, and
Capobianco
,
M.
,
2014
, “
Experimental Analysis on the Performance of a Turbocharger Compressor in the Unstable Operating Region and Close to the Surge Limit
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
154
160
.10.1016/j.expthermflusci.2013.11.025
45.
Ju
,
Y.
,
Zhang
,
C.
, and
Chi
,
X.
,
2012
, “
Optimization of Centrifugal Impellers for Uniform Discharge Flow and Wide Operating Range
,”
AIAA J. Propul. Power
,
28
(
5
), pp.
888
899
.10.2514/1.B34193
46.
Xue
,
X.
, and
Wang
,
T.
,
2020
, “
Experimental Study on Inducement and Development of Flow Instabilities in a Centrifugal Compressor With Different Diffuser Types
,”
J. Therm. Sci.
,
29
(
2
), pp.
435
444
.10.1007/s11630-020-1223-4
47.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
48.
Fujisawa
,
N.
,
Inui
,
T.
, and
Ohta
,
Y.
,
2019
, “
Evolution Process of Diffuser Stall in a Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
141
(
4
), p.
041009
.10.1115/1.4042249
49.
Emmons
,
H.
,
Pearson
,
C.
, and
Grant
,
H.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME
Paper No. 53-A-65.10.1115/53-A-65
50.
Brodersen
,
S.
,
Metzger
,
D. E.
, and
Fernando
,
H. J. S.
,
1996
, “
Flows Generated by the Impingement of a Jet on a Rotating Surface: Part I—Basic Flow Patterns
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
61
67
.10.1115/1.2817514
51.
Yang
,
W.
, and
Xiao
,
R.
,
2014
, “
Multiobjective Optimization Design of a Pump–Turbine Impeller Based on an Inverse Design Using a Combination Optimization Strategy
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
014501
.10.1115/1.4025454
You do not currently have access to this content.