Abstract

We present a method that combines a physics-informed deep neural network and Stokes' second problem to estimate the porosity and the permeability of a porous medium. Particularly, we investigate the accuracy of physics-informed deep neural networks in predicting the hidden quantities of interest, such as velocity and unknown parameters, including permeability and porosity, by employing different network architectures and different sizes of input data sets. The employed neural network is jointly trained to match the essential class of physical laws governing fluid motion in porous media (Darcy's law and mass conservation) and the fluid velocities in the domain or region of interest. Therefore, the described approach allows the estimation of hidden quantities of interest. This strategy conditions the neural network to honor physical principles. Thus, the model adapts to fit best the data provided while striving to respect the governing physical laws. Results show that the proposed approach achieves significant accuracy in estimating the velocity, permeability, and porosity of the media, even when the neural network is trained by a relatively small input data-set. Also, results demonstrate that using the optimal neural network architecture is indispensable to increase the porosity and permeability prediction accuracy.

References

1.
Jaynes
,
D. B.
,
Ahmed
,
S. I.
,
Kung
,
K.-J. S.
, and
Kanwar
,
R. S.
,
2001
, “
Temporal Dynamics of Preferential Flow to a Subsurface Drain
,”
Soil Sci. Soc. Am. J.
,
65
(
5
), pp.
1368
1376
.10.2136/sssaj2001.6551368x
2.
Li
,
H.
, and
Boufadel
,
M. C.
,
2010
, “
Long-Term Persistence of Oil From the Exxon Valdez Spill in Two-Layer Beaches
,”
Nat. Geosci.
,
3
(
2
), pp.
96
99
.10.1038/ngeo749
3.
Zarandi
,
M. A. F.
,
Pillai
,
K. M.
, and
Barari
,
B.
,
2018
, “
Flow Along and Across Glass-Fiber Wicks: Testing of Permeability Models Through Experiments and Simulations
,”
AIChE J.
,
64
(
9
), pp.
3491
3501
.10.1002/aic.16195
4.
Holloway
,
S.
,
2005
, “
Underground Sequestration of Carbon Dioxide–a Viable Greenhouse Gas Mitigation Option
,”
Energy
,
30
(
11–12
), pp.
2318
2333
.10.1016/j.energy.2003.10.023
5.
Sterpenich
,
J.
,
Sausse
,
J.
,
Pironon
,
J.
,
Gehin
,
A.
,
Hubert
,
G.
,
Perfetti
,
E.
, and
Grgic
,
D.
,
2009
, “
Experimental Ageing of Oolitic Limestones Under CO2 Storage Conditions: Petrographical and Chemical Evidence
,”
Chem. Geol.
,
265
(
1–2
), pp.
99
112
.10.1016/j.chemgeo.2009.04.011
6.
Bear
,
J.
,
1988
,
Dynamics of Fluids in Porous Media
, Dover Civil and Mechanical Engineering Series,
Dover
, Mineola, NY.
7.
Wardlaw
,
N.
, and
McKellar
,
M.
,
1981
, “
Mercury Porosimetry and the Interpretation of Pore Geometry in Sedimentary Rocks and Artificial Models
,”
Powder Technol.
,
29
(
1
), pp.
127
143
.10.1016/0032-5910(81)85011-5
8.
Labani
,
M. M.
,
Rezaee
,
R.
,
Saeedi
,
A.
, and
Al Hinai
,
A.
,
2013
, “
Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study From the Perth and Canning Basins, Western Australia
,”
J. Pet. Sci. Eng.
,
112
, pp.
7
16
.10.1016/j.petrol.2013.11.022
9.
Sun
,
J.
,
Dong
,
X.
,
Wang
,
J.
,
Schmitt
,
D. R.
,
Xu
,
C.
,
Mohammed
,
T.
, and
Chen
,
D.
,
2016
, “
Measurement of Total Porosity for Gas Shales by Gas Injection Porosimetry (Gip) Method
,”
Fuel
,
186
, pp.
694
707
.10.1016/j.fuel.2016.09.010
10.
Dullien
,
F.
,
1992
, “
4–Selected Operations Involving Transport of a Single Fluid Phase Through a Porous Medium
,”
Porous Media: Fluid Transport and Pore Structure
,
H.
Brenner
, ed.,
Academic Press
,
San Diego, CA
, pp.
319
332
.
11.
Dullien
,
F.
,
1992
, “
3–Single-Phase Transport Phenomena in Porous Media
,”
Porous Media: Fluid Transport and Pore Structure
,
H.
Brenner
, ed.,
Academic Press
,
San Diego, CA
, pp.
237
317
.
12.
Tomadakis
,
M. M.
, and
Robertson
,
T. J.
,
2005
, “
Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates With Experimental and Analytical Results
,”
J. Compos. Mater.
,
39
(
2
), pp.
163
188
.10.1177/0021998305046438
13.
Berdichevsky
,
A. L.
, and
Cai
,
Z.
,
1993
, “
Preform Permeability Predictions by Self-Consistent Method and Finite Element Simulation
,”
Polym. Compos.
,
14
(
2
), pp.
132
143
.10.1002/pc.750140207
14.
Gebart
,
R.
,
1992
, “
Permeability of Unidirectional Reinforcements for Rtm
,”
J. Compos. Mater.
,
26
(
8
), pp.
1100
1133
.10.1177/002199839202600802
15.
Bruschke
,
M. V.
, and
Advani
,
S. G.
,
1993
, “
Flow of Generalized Newtonian Fluids Across a Periodic Array of Cylinders
,”
J. Rheol.
,
37
(
3
), pp.
479
498
.10.1122/1.550455
16.
Jaganathan
,
S.
,
Vahedi Tafreshi
,
H.
, and
Pourdeyhimi
,
B.
,
2008
, “
A Realistic Approach for Modeling Permeability of Fibrous Media: 3-d Imaging Coupled With Cfd Simulation
,”
Chem. Eng. Sci.
,
63
(
1
), pp.
244
252
.10.1016/j.ces.2007.09.020
17.
Hwang
,
W. R.
, and
Advani
,
S. G.
,
2010
, “
Numerical Simulations of Stokes–Brinkman Equations for Permeability Prediction of Dual Scale Fibrous Porous Media
,”
Phys. Fluids
,
22
(
11
), p.
113101
.10.1063/1.3484273
18.
Wang
,
H.
, and
Wang
,
P.
,
2017
, “
An Experimental Investigation of the Permeability in Porous Chip Formed by Micropost Arrays Based on Microparticle Image Velocimetry and Micromanometer Measurements
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021108
.10.1115/1.4034753
19.
Batchelor
,
G.
,
2000
,
An Introduction to Fluid Dynamics
, Cambridge Mathematical Library,
Cambridge University Press
.
20.
Stokes
,
G. G.
,
1851
, “
On the Effect of the Internal Friction of Fluids on the Motion of Pendulums
,”
Trans. Cambridge Philos. Soc.
,
9
, p.
8
.theindex.nawcc.org/Articles/Stokes-InternalFriction.pdf
21.
Rajagopal
,
K.
,
1982
, “
A Note on Unsteady Unidirectional Flows of a Non-Newtonian Fluid
,”
Int. J. Non-Linear Mech.
,
17
(
5–6
), pp.
369
373
.10.1016/0020-7462(82)90006-3
22.
Erdogan
,
M. E.
,
2000
, “
A Note on an Unsteady Flow of a Viscous Fluid Due to an Oscillating Plane Wall
,”
Int. J. Non-Linear Mech.
,
35
(
1
), pp.
1
6
.10.1016/S0020-7462(99)00019-0
23.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes' Second Problem
,”
Anal. Chem.
,
73
(
21
), pp.
5097
5102
.10.1021/ac015546y
24.
Fetecau
,
C.
,
Vieru
,
D.
, and
Fetecau
,
C.
,
2008
, “
A Note on the Second Problem of Stokes for Newtonian Fluids
,”
Int. J. Non-Linear Mech.
,
43
(
5
), pp.
451
457
.10.1016/j.ijnonlinmec.2007.12.022
25.
Panton
,
R.
,
1968
, “
The Transient for Stokes's Oscillating Plate: A Solution in Terms of Tabulated Functions
,”
J. Fluid Mech.
,
31
(
4
), pp.
819
825
.10.1017/S0022112068000509
26.
Ali
,
F.
,
Norzieha
,
M.
,
Sharidan
,
S.
,
Khan
,
I.
, and
Hayat
,
T.
,
2012
, “
New Exact Solutions of Stokes' Second Problem for an Mhd Second Grade Fluid in a Porous Space
,”
Int. J. Non-Linear Mech.
,
47
(
5
), pp.
521
525
.10.1016/j.ijnonlinmec.2011.09.027
27.
Liu
,
C.-M.
, and
Liu
,
I.-C.
,
2006
, “
A Note on the Transient Solution of Stokes' Second Problem With Arbitrary Initial Phase
,”
J. Mech.
,
22
(
4
), pp.
349
354
.10.1017/S1727719100001003
28.
Vajravelu
,
K.
, and
Rivera
,
J.
,
2003
, “
Hydromagnetic Flow at an Oscillating Plate
,”
Int. J. Non-Linear Mech.
,
38
(
3
), pp.
305
312
.10.1016/S0020-7462(01)00063-4
29.
Yakhot
,
V.
, and
Colosqui
,
C.
,
2007
, “
Stokes' Second Flow Problem in a High-Frequency Limit: Application to Nanomechanical Resonators
,”
J. Fluid Mech.
,
586
, pp.
249
258
.10.1017/S0022112007007148
30.
Hussain
,
M.
,
Hayat
,
T.
,
Asghar
,
S.
, and
Fetecau
,
C.
,
2010
, “
Oscillatory Flows of Second Grade Fluid in a Porous Space
,”
Nonlinear Anal. Real World Appl.
,
11
(
4
), pp.
2403
2414
.10.1016/j.nonrwa.2009.07.016
31.
Jaiswal
,
B.
, and
Soundalgekar
,
V.
,
2001
, “
Oscillating Plate Temperature Effects on a Flow Past an Infinite Vertical Porous Plate With Constant Suction and Embedded in a Porous Medium
,”
Heat Mass Transfer
,
37
(
2–3
), pp.
125
131
.10.1007/s002310000180
32.
Israel-Cookey
,
C.
,
Amos
,
E.
, and
Nwaigwe
,
C.
,
2010
, “
Mhd Oscillatory Couette Flow of a Radiating Viscous Fluid in a Porous Medium With Periodic Wall Temperature
,”
Am. J. Sci. Ind. Res.
,
1
(
2
), pp.
326
331
.10.5251/ajsir.2010.1.2.326.331
33.
Okedoye
,
A.
,
2013
, “
Heat and Hall Effect of an Oscillating Plate in a Porous Medium
,”
Adv. Agric., Sci. Eng. Res.
,
3
(
7
), pp.
972
983
.https://core.ac.uk/download/pdf/19447796.pdf
34.
Abro
,
K.
,
2016
, “
Porous Effects on Second Grade Fluid in Oscillating Plate
,”
J. Appl. Environ. Biol. Sci.
,
5
(
1
), pp.
71
82
.https://www.researchgate.net/publication/303371017_Porous_Effects_on_Second_Grade_Fluid_in_Oscillating_Plate
35.
Chaudhary
,
R.
, and
Jain
,
A.
,
2007
, “
Combined Heat and Mass Transfer Effect on Mhd Free Convection Flow Past an Oscillating Plate Embedded in Porous Medium
,”
Romanian J. Phys.
,
52
(5–7), pp.
505
524
.https://www.researchgate.net/publication/228650645_Combined_heat_and_mass_transfer_effect_on_MHD_free_convection_flow_past_an_oscillating_plate_embedded_in_porous_medium
36.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.10.1016/j.jcp.2018.10.045
37.
Quintino
,
A. M.
,
da Rocha
,
D. L. L. N.
,
Fonseca Jr
,
R.
, and
Rodriguez
,
O. M. H.
,
2020
, “
Flow Pattern Transition in Pipes Using Data-Driven and Physics-Informed Machine Learning
,”
ASME J. Fluids Eng.
,
143
(
3
), p.
031401
.10.1115/1.4048876
38.
Fathi
,
M.
,
Perez-Raya
,
I.
,
Baghaie
,
A.
,
Berg
,
P.
,
Janiga
,
G.
,
Arzani
,
A.
, and
D'Souza
,
R.
,
2020
, “
Super-Resolution and Denoising of 4d-Flow Mri Using Physics-Informed Deep Neural Nets
,”
Comput. Methods Programs Biomed.
,
197
, p.
105729
.10.1016/j.cmpb.2020.105729
39.
Singh
,
J.
,
Joshi
,
N.
, and
Begum
,
S.
,
2016
, “
Unsteady Magnetohydrodynamic Couette-Poiseuille Flow Within Porous Plates Filled With Porous Medium in the Presence of a Moving Magnetic Field With Hall and Ion-Slip Effects
,”
Int. J. Heat Technol.
,
34
(
1
), pp.
89
97
.10.18280/ijht.340113
40.
Khodadadi
,
J. M.
,
1991
, “
Oscillatory Fluid Flow Through a Porous Medium Channel Bounded by Two Impermeable Parallel Plates
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
509
511
.10.1115/1.2909526
41.
Chamkha
,
A. J.
,
2001
, “
Unsteady Laminar Hydromagnetic Flow and Heat Transfer in Porous Channels With Temperature-Dependent Properties
,”
Int. J. Numer. Methods Heat Fluid Flow
,
11
(
5
), pp.
430
448
.10.1108/EUM0000000005529
42.
Shakhawath Hossain
,
M.
, and
Daidzic
,
N. E.
,
2012
, “
The Shear-Driven Fluid Motion Using Oscillating Boundaries
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051203
.10.1115/1.4006362
43.
Scheidegger
,
A. E.
,
1957
, “
Chapter 3 - Rigorous Derivation of Governing Equations for Single-Phase Flow and Transport in Porous Media From the Pore-Scale Flow Physics
,”
In the Physics of Flow Through Porous Media. University of Toronto Press
,
Scholarly Publishing
,
Toronto
, pp.
62
92
.
44.
Hassanipour
,
F.
,
Raya
,
I. P.
, and
Mortazavi
,
S. N.
,
2013
, “
Simulation of Vortex Ring Permeation in Porous Media
,”
J. Porous Media
,
16
(
7
), pp.
597
605
.10.1615/JPorMedia.v16.i7.20
45.
Nield
,
D. A.
,
Junqueira
,
S. L. M.
, and
Lage
,
J. L.
,
1996
, “
Forced Convection in a Fluid Saturated Porous Medium Channel With Isothermal or Isoflux Boundaries
,”
J. Fluid Mech.
,
322
, pp.
201
214
.10.1017/S0022112096002765
46.
Ingham
,
D.
,
Bejan
,
A.
,
Mamut
,
E.
, and
Pop
,
I.
,
2004
,
Emerging Technologies and Techniques in Porous Media
, 3rd ed.,
Springer Publishing
,
New York
.
47.
Ward
,
J.
,
1964
, “
Turbulent Flow in Porous Media
,”
J. Hydraulics
,
90
(
5
), pp.
1
12
.10.1061/JYCEAJ.0001096
48.
Misaka
,
T.
,
2021
, “
Estimation of Vortex-Induced Vibration Based on Observed Wakes Using Computational Fluid Dynamics-Trained Deep Neural Network
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
104501
.10.1115/1.4050974
49.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Inferring Solutions of Differential Equations Using Noisy Multi-Fidelity Data
,”
J. Comput. Phys.
,
335
, pp.
736
746
.10.1016/j.jcp.2017.01.060
50.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “
Machine Learning of Linear Differential Equations Using Gaussian Processes
,”
J. Comput. Phys.
,
348
, pp.
683
693
.10.1016/j.jcp.2017.07.050
51.
Kingma
,
D.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for
stochastic optimization,” arXiv preprint arXiv: 1412.6980.
52.
Robbins
,
H.
, and
Monro
,
S.
,
1951
, “
A Stochastic Approximation Method
,”
Ann. Math. Stat.
,
22
(
3
), pp.
400
407
.10.1214/aoms/1177729586
53.
Baydin
,
A.
,
Pearlmutter
,
B.
,
Radul
,
A.
, and
Siskind
,
J.
,
2018
, “
Automatic Differentiation in Machine Learning
: A Survey,”
J. Mach. Learn. Res.
,
18
, pp.
1
43
.https://www.jmlr.org/papers/volume18/17-468/17-468.pdf
54.
Vafai
,
K.
, and
Tien
,
C.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.10.1016/0017-9310(81)90027-2
55.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1987
,
Fluid Mechanics
,
Pergamon Press
, Oxford, UK.
You do not currently have access to this content.