Abstract

To predict liquid–gas two-phase flow, accurate tracking of the evolving liquid–gas interface is required. Volume-of-fluid (VoF) method has been used for computationally modeling such flows where a single set of governing equations are solved for both phases along with an advection equation for the volume fraction. Properties in each cell are determined by a linear weighted average of the properties of the two fluids based on the phase fraction. While the method predicts water–air flows well, the predictions tend to deviate significantly from experiments for liquids with high viscosity. A new property averaging technique is proposed, which is shown to provide accurate results for high viscosity liquids. Computational predictions using open-source VoF solver inter-foam and the proposed method are compared with experimental data for multiple two-phase applications. Four different problems, viz., suspended drop, jet breakup, drop impact on thin films, and on liquid pools, are considered to extensively validate the new method. Data for aqueous solutions of propylene and ethylene glycol are used to cover a range of surface tension (72–36 mN/m) and viscosities (1–40 mPa·s). For all cases, the modified VoF solver is observed to perform significantly better than the original VoF method. It reduces spurious currents in simulations of a drop suspended in the air. For the cases of a drop impacting on a pool and during drop generation from liquid jets, the time progression of the surface tension governed dynamics is improved from the slower estimate of the inter-Foam solver.

References

1.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
2.
Sadhal
,
S. S.
,
Ayyaswamy
,
P. S.
,
Chung
.,
J. N.
,
1996
,
Transport Phenomena With Drops and Bubbles
,
Springer-Verlag
,
New York
, pp.
522
527
.
3.
Berberović
,
E.
,
Van Hinsberg
,
N. P.
,
Jakirlić
,
S.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2009
, “
Drop Impact Onto a Liquid Layer of Finite Thickness: Dynamics of the Cavity Evolution
,”
Phys. Rev. E Stat. Nonlinear, Soft Matter Phys.
,
79
(
3
)
4.
Khodaparast
,
S.
,
Magnini
,
M.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2015
, “
Dynamics of Isolated Confined Air Bubbles in Liquid Flows Through Circular Microchannels: An Experimental and Numerical Study
,”
Microfluid. Nanofluid.
,
19
(
1
), pp.
209
234
.10.1007/s10404-015-1566-4
5.
Srinivasan
,
V.
,
Salazar
,
A. J.
, and
Saito
,
K.
,
2011
, “
Modeling the Disintegration of Modulated Liquid Jets Using Volume-of-Fluid (VOF) Methodology
,”
Appl. Math. Model.
,
35
(
8
), pp.
3710
3730
.10.1016/j.apm.2011.01.040
6.
Lewis
,
S. R.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2013
, “
Numerical Simulations of Droplet Train and Free Surface Jet Impingement
,”
Int. J. Heat Fluid Flow
,
44
, pp.
610
623
.10.1016/j.ijheatfluidflow.2013.09.001
7.
Liu
,
J.
,
Vu
,
H.
,
Yoon
,
S. S.
,
Jepsen
,
R. A.
, and
Aguilar
,
G.
,
2010
, “
Splashing Phenomena During Liquid Droplet Impact
,”
At. Sprays
,
20
(
4
), pp.
297
310
.10.1615/AtomizSpr.v20.i4.30
8.
Trujillo
,
M. F.
,
Alvarado
,
J.
,
Gehring
,
E.
, and
Soriano
,
G. S.
,
2011
, “
Numerical Simulations and Experimental Characterization of Heat Transfer From a Periodic Impingement of Droplets
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
12
), p.
122201
.10.1115/1.4004348
9.
Manoharan
,
S.
,
Deodhar
,
A. M.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2019
, “
Computational Modeling of Adiabatic Bubble Growth Dynamics From Submerged Capillary-Tube Orifices in Aqueous Solutions of Surfactants
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
5
), p.
052002
.10.1115/1.4042700
10.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.10.1016/0021-9991(92)90307-K
11.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
12.
Zhang
,
J.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2006
, “
A Front Tracking Method for a Deformable Intravascular Bubble in a Tube With Soluble Surfactant Transport
,”
J. Comput. Phys.
,
214
(
1
), pp.
366
396
.10.1016/j.jcp.2005.09.016
13.
Swedlow
,
J. L.
, and
Cruse
,
T. A.
,
1971
, “
Formulation of Boundary Integral Equations for Three-Dimensional Elasto-Plastic Flow
,”
Int. J. Solids Struct.
,
7
(
12
), pp.
1673
1683
.10.1016/0020-7683(71)90006-0
14.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
15.
Herrmann
,
M.
,
2005
, “
Refined Level Set Grid Method for Tracking Interfaces
,”
Annual Research Briefs 2005
, Center for Turbulence Research, Stanford University, Stanford, CA.
16.
Li
,
Z.
,
Jaberi
,
F. A.
, and
Shih
,
T. J. P.
,
2008
, “
A Hybrid Lagrangian-Eulerian Particle-Level Set Method for Numerical Simulations of Two-Fluid Turbulent Flows
,”
Int. J. Numer. Methods Fluids
,
56
(
12
), pp.
2271
2300
.10.1002/fld.1621
17.
Desjardins
,
O.
,
Moureau
,
V.
, and
Pitsch
,
H.
,
2008
, “
An Accurate Conservative Level Set/Ghost Fluid Method for Simulating Turbulent Atomization
,”
J. Comput. Phys.
,
227
(
18
), pp.
8395
8416
.10.1016/j.jcp.2008.05.027
18.
Ménard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
,
2007
, “
Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
510
524
.10.1016/j.ijmultiphaseflow.2006.11.001
19.
Ray
,
B.
,
Biswas
,
G.
, and
Sharma
,
A.
,
2015
, “
Regimes During Liquid Drop Impact on a Liquid Pool
,”
J. Fluid Mech.
,
768
, pp.
492
523
.10.1017/jfm.2015.108
20.
Farvardin
,
E.
, and
Dolatabadi
,
A.
,
2013
, “
Numerical Simulation of the Breakup of Elliptical Liquid Jet in Still Air
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071302
.10.1115/1.4024081
21.
Ubbink
,
O.
, and
Issa
,
R. I.
,
1999
, “
A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes
,”
J. Comput. Phys.
,
153
(
1
), pp.
26
50
.10.1006/jcph.1999.6276
22.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver InterFoam
,”
Comput. Sci. Discov.
,
5
(
1
), p.
014016
.10.1088/1749-4699/5/1/014016
23.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.10.1016/0021-9991(92)90240-Y
24.
Tang
,
H.
, and
Wrobel
,
L. C.
,
2005
, “
Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes
,”
Int. J. Eng. Sci.
,
43
(
15–16
), pp.
1234
1256
.10.1016/j.ijengsci.2005.03.011
25.
Beerners
,
J. C.
,
2013
,
Lubricated Transport of Heavy Oil: Simulations of Multiphase Flow With OpenFOAM
, M. S. thesis,
Delft University of Technology
, Delft, The Netherlands.
26.
Bohacek
,
J.
,
2010
, “
Surface Tension Model for High Viscosity Ratios Implemented in VOF Model
,” ILASS-Europe 2010, 23rd
Annual Conference on Liquids Atomization and Spray Systems, Sept. 6–8, Brno, Czech Republic
, pp.
1
8
.
27.
Mooney
,
K.
,
Menon
,
S.
, and
Schmidt
,
D. P.
,
2010
, “
A Computational Study of Viscoelastic Droplet Collisions
,”
ILASS—America 22nd Annual Conference on Liquid Atomization and Spray Systems
, May 16–19, Cincinnati, OH.
28.
Puckett
,
E. G.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Marcus
,
D. L.
, and
Rider
,
W. J.
,
1997
, “
A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows
,”
J. Comput. Phys.
,
130
(
2
), pp.
269
282
.10.1006/jcph.1996.5590
29.
Popinet
,
S.
, and
Zaleski
,
S.
,
1999
, “
A Front-Tracking Algorithm for Accurate Representation of Surface Tension
,”
Int. J. Numer. Methods Fluids
,
30
(
6
), pp.
775
793
.10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.CO;2-#
30.
Gerlach
,
D.
,
Tomar
,
G.
,
Biswas
,
G.
, and
Durst
,
F.
,
2006
, “
Comparison of Volume-of-Fluid Methods for Surface Tension-Dominant Two-Phase Flows
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
740
754
.10.1016/j.ijheatmasstransfer.2005.07.045
31.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
32.
Thoraval
,
M.-J.
,
Takehara
,
K.
,
Etoh
,
T. G.
, and
Thoroddsen
,
S. T.
,
2013
, “
Drop Impact Entrapment of Bubble Rings
,”
J. Fluid Mech.
,
724
, pp.
234
258
.10.1017/jfm.2013.147
33.
Tran
,
T.
,
de Maleprade
,
H.
,
Sun
,
C.
, and
Lohse
,
D.
,
2013
, “
Air Entrainment During Impact of Droplets on Liquid Surfaces
,”
J. Fluid Mech.
,
726
, p.
R3
.10.1017/jfm.2013.261
34.
Lin
,
S. P.
, and
Reitz
,
R. D.
,
1998
, “
Drop and Spray Formation From a Liquid Jet
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
85
105
.10.1146/annurev.fluid.30.1.85
35.
Eggers
,
J.
, and
Villermaux
,
E.
,
2008
, “
Physics of Liquid Jets
,”
Rep. Prog. Phys.
,
71
(
3
), p. 036601.
36.
van Hoeve
,
W.
,
Gekle
,
S.
,
Snoeijer
,
J. H.
,
Versluis
,
M.
,
Brenner
,
M. P.
, and
Lohse
,
D.
,
2010
, “
Breakup of Diminutive Rayleigh Jets
,”
Phys. Fluids
,
22
(
12
), pp.
1
11
.10.1063/1.3524533
37.
Rajendran
,
S.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2017
, “
Experimental Investigation of Jet Breakup at Low Weber Number
,”
At. Sprays
,
27
(
9
), pp.
821
834
.10.1615/AtomizSpr.2017019424
38.
Rajendran
,
S.
,
2017
,
Investigation of Drop Generation From Low Velocity Liquid Jets and Its Impact Dynamics on Thin Liquid Films
, Doctoral Dissertation,
University of Cincinnati
, Cincinnati, OH.
39.
Borthakur
,
M. P.
,
Biswas
,
G.
, and
Bandyopadhyay
,
D.
,
2017
, “
Formation of Liquid Drops at an Orifice and Dynamics of Pinch-Off in Liquid Jets
,”
Phys. Rev. E
,
96
(
1
), p. 013115.10.1103/PhysRevE.96.013115
You do not currently have access to this content.