Abstract

This study evaluates how Reynolds-averaged Navier–Stokes (RANS) models perform in simulating the characteristics of mean three-dimensional perturbed flows in pipes with targeted wall-shapes. The principal objective of this investigation is to evaluate which of the well-established RANS models can best predict the flow response and recovery characteristics in perturbed pipes at moderate and high Reynolds numbers (1×1041.58×105). First, the flow profiles at various axial locations are compared between simulations and experiments. This is followed by assessing the well-known mean pipeflow scaling relation in the far downstream region, where the flow obtains a fully-developed state. The consistency of computationally predicted results and their similarities with experiments suggested that the Standard kε model can accurately capture the pipeflow characteristics in response to introduced perturbation with smooth sinusoidal axial variations.

References

1.
Yamagata
,
T.
,
Ito
,
A.
,
Sato
,
Y.
, and
Fujisawa
,
N.
,
2014
, “
Experimental and Numerical Studies on Mass Transfer Characteristics Behind an Orifice in a Circular Pipe for Application to Pipe-Wall Thinning
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
239
247
.10.1016/j.expthermflusci.2013.09.017
2.
Leonardi
,
S.
, and
Castro
,
I. P.
,
2010
, “
Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
651
, pp.
519
539
.10.1017/S002211200999423X
3.
Cui
,
J.
,
Patel
,
V. C.
, and
Lin
,
C.-L.
,
2003
, “
Large-Eddy Simulation of Turbulent Flow in a Channel With Rib Roughness
,”
Int. J. Heat Fluid Flow
,
24
(
3
), pp.
372
388
.10.1016/S0142-727X(03)00002-X
4.
Cappelli
,
D.
, and
Mansour
,
N. N.
,
2013
, “
Performance of Reynolds Averaged Navier-Stokes Models in Predicting Separated Flows: Study of the Hump Flow Model Problem
,”
AIAA
Paper No.
2013
3154
.10.2514/6.2013-3154
5.
Goswami
,
S.
, and
Hemmati
,
A.
,
2020
, “
Response of Turbulent Pipeflow to Multiple Square Bar Roughness Elements at High Reynolds Number
,”
Phys. Fluids
,
32
(
7
), p.
075110
.10.1063/5.0014832
6.
Masoumifar
,
M.
,
Verma
,
S.
, and
Hemmati
,
A.
,
2021
, “
Response of Turbulent Pipe Flow to Targeted Wall Shapes at a Range of Reynolds Numbers
,”
Phys. Fluids
,
33
(
6
), p.
065105
.10.1063/5.0051345
7.
Hemmati
,
A.
,
Wood
,
D. H.
, and
Martinuzzi
,
R. J.
,
2018
, “
On Simulating the Flow Past a Normal Thin Flat Plate
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
170
187
.10.1016/j.jweia.2017.12.026
8.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1983
, “
The Numerical Computation of Turbulent Flows
,” Computer Methods in Applied Mechanics and Engineering,
Elsevier
, The Netherlands, pp.
96
116
.
9.
Rumsey
,
C.
,
Gatski
,
T.
,
Sellers
,
W.
,
Vatsa
,
V.
, and
Viken
,
S.
,
2004
, “
Summary of the 2004 Cfd Validation Workshop on Synthetic Jets and Turbulent Separation Control
,”
AIAA
Paper No.
2004
2217
.10.2514/6.2004-2217
10.
Fogaing
,
M. B. T.
,
Hemmati
,
A.
,
Lange
,
C. F.
, and
Fleck
,
B. A.
,
2019
, “
Performance of Turbulence Models in Simulating Wind Loads on Photovoltaics Modules
,”
Energies
,
12
(
17
), p.
3290
.10.3390/en12173290
11.
Hemmati
,
A.
,
2016
, “
Evolution of Large-Scale Structures in the Wake of Sharp-Edge Thin Flat Bodies
,” Ph.D. thesis, University of Calgary, AB, Canada.
12.
Smits
,
A.
,
Ding
,
L.
, and
Van Buren
,
T.
,
2019
, “
Flow Over a Square Bar Roughness
,”
Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena
, Vol.
11
, Southampton, UK, July, Paper No. 338-2.
13.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mechanics
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
14.
Zumaeta
,
N.
,
Byrne
,
E. P.
, and
Fitzpatrick
,
J. J.
,
2007
, “
Predicting Precipitate Breakage During Turbulent Flow Through Different Flow Geometries
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
292
(
2–3
), pp.
251
263
.10.1016/j.colsurfa.2006.06.032
15.
Van Buren
,
T.
,
Hellstrom
,
L. H.
,
Marusic
,
I.
, and
Smits
,
A. J.
,
2017
, “
Turbulent Pipe Flow Response to Wall Changes Targeting Specific Azimuthal Modes
,”
Tenth International Symposium on Turbulence and Shear Flow Phenomena
,
Begel House Inc
.
16.
McKeon
,
B.
,
Swanson
,
C.
,
Zagarola
,
M.
,
Donnelly
,
R.
, and
Smits
,
A. J.
,
2004
, “
Friction Factors for Smooth Pipe Flow
,”
J. Fluid Mech.
,
511
, pp.
41
44
.10.1017/S0022112004009796
17.
Pollard
,
A.
, and
Martinuzzi
,
R.
,
1989
, “
Comparative Study of Turbulence Models in Predicting Turbulent Pipe Flow. ii-Reynolds Stress and k-Epsilon Models
,”
AIAA J.
,
27
(
12
), pp.
1714
1721
.10.2514/3.10325
18.
Zagarola
,
M.
,
Smits
,
A.
,
Orszag
,
S.
, and
Yakhot
,
V.
,
1996
, “
Experiments in High Reynolds Number Turbulent Pipe Flow
,”
34th Aerospace Sciences Meeting and Exhibit
, Jan 1996, Reno, NV, p.
654
.
19.
Kaneda
,
M.
,
Yu
,
B.
,
Ozoe
,
H.
, and
Churchill
,
S. W.
,
2003
, “
The Characteristics of Turbulent Flow and Convection in Concentric Circular Annuli. part I: Flow
,”
Int. J. Heat Mass Transfer
,
46
(
26
), pp.
5045
5057
.10.1016/S0017-9310(03)00365-X
20.
Menter
,
F.
, and
Esch
,
T.
,
2001
, “
Elements of Industrial Heat Transfer Predictions
,”
16th Brazilian Congress of Mechanical Engineering (COBEM)
, Vol. 109, Minas Gerais, Brazil, Nov., pp.
650
.
21.
Hultmark
,
M.
,
Vallikivi
,
M.
,
Bailey
,
S. C. C.
, and
Smits
,
A.
,
2012
, “
Turbulent Pipe Flow at Extreme Reynolds Numbers
,”
Phys. Rev. Lett.
,
108
(
9
), p.
094501
.10.1103/PhysRevLett.108.094501
22.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.10.1017/S0022112098002419
You do not currently have access to this content.