Abstract

The propulsion and vortical flow of a preswirl pump-jet propulsor (PJP) under effective wake conditions are numerically investigated by improved delayed detached eddy simulation. The numerical results agree well with the experiments. The effects of the interaction between the hull and PJP on the propulsion performance and flow characteristics are discussed in detail, particularly the effects on the flows around the duct and the stator. Results show that the PJP performance changes noticeably owing to the hull-retarded flow. The rotor forces are mainly changed due to the effective velocity magnitude of the PJP oncoming flow, while the flow direction does not show notable effects as the duct and stator notably improve the rotor oncoming flow. The appendage wake notably increases the thrust fluctuation of the rotor, causing dominant fluctuation components at low frequencies. The thrusts on the duct and stator are sensitive to the direction of the PJP oncoming flow, as the flows around them change considerably when the flow direction changes. The flow direction affects the velocity and pressure distribution of the duct and the generation and evolution of vortices in the stator region. The forward stagnation point on the duct plays a crucial role in duct thrust, around flow, and in the flow into the duct. The stator improves the uniformity of the rotor inflow during preswirling of the flow under effective wake conditions, which is very important for a submarine-applied PJP. The interaction between the hull and PJP is very complex.

References

1.
Henderson
,
R.
,
McMahon
,
J.
, and
Wislicenus
,
G.
,
1964
, “
A Method for the Design of Pumpjets
,” Pennsylvania State University State College Ordnance Research Lab, Alexandria, VA, Report No. 439631.
2.
Bruce
,
E. P.
,
Gearhart
,
W.
,
Ross
,
J.
, and
Treaster
,
A.
,
1974
, “
The Design of Pumpjets for Hydrodynamic Propulsion
,”
NASA Spec. Publ.
,
304
, p.
795
.https://ntrs.nasa.gov/citations/19750003135
3.
Furuya
,
O.
, and
Chiang
,
W.-L.
,
1988
, “
A New Pumpjet Design Theory
,”
Honeywell, Hopkins
, MN, Report No.
N00014-85-C-0050
.https://apps.dtic.mil/sti/pdfs/ADA201353.pdf
4.
Kerwin
,
J. E.
,
Keenan
,
D.
,
Black
,
S.
,
Diggs
,
J.
, and
Schott
,
C.
,
1994
, “
A Coupled Viscous/Potential Flow Design Method for Wake-Adapted, Multi-Stage, Ducted Propulsors Using Generalized Geometry. Discussion. Authors' Closure
,”
Trans.-Soc. Nav. Archit. Mar. Eng.
,
102
, pp.
23
56
.https://www.semanticscholar.org/paper/A-coupled-viscous%2Fpotential-flowdesign-method-for-Kerwin-Keenan/067821465d06cc36c12f4a3d282582c7c42157fd
5.
Kerwin
,
J.
,
Black
,
S.
,
Taylor
,
T.
, and
Warren
,
C.
,
1997
, “
A Design Procedure for Marine Vehicles With Integrated Propulsors
,”
Propellers/Shafting
,
97
, pp.
167
173
.10.3969/j.issn.1006-7043.2010.04.004
6.
Suryanarayana
,
C.
,
Satyanarayana
,
B.
,
Ramji
,
K.
, and
Saiju
,
A.
,
2010
, “
Experimental Evaluation of Pumpjet Propulsor for an Axi-Symmetric Body in Wind Tunnel
,”
Int. J. Nav. Arch. Ocean Eng.
,
2
(
1
), pp.
24
33
.10.2478/IJNAOE-2013-0016
7.
Suryanarayana
,
C.
,
Satyanarayana
,
B.
, and
Ramji
,
K.
,
2010
, “
Performance Evaluation of an Underwater Body and Pumpjet by Model Testing in Cavitation Tunnel
,”
Int. J. Nav. Arch. Ocean Eng.
,
2
(
2
), pp.
57
67
.10.2478/IJNAOE-2013-0020
8.
Suryanarayana
,
C.
,
Satyanarayana
,
B.
,
Ramji
,
K.
, and
Rao
,
M. N.
,
2010
, “
Cavitation Studies on Axi-Symmetric Underwater Body With Pumpjet Propulsor in Cavitation Tunnel
,”
Int. J. Nav. Arch. Ocean Eng.
,
2
(
4
), pp.
185
194
.10.2478/IJNAOE-2013-0035
9.
Shirazi
,
A. T.
,
Nazari
,
M. R.
, and
Manshadi
,
M. D.
,
2019
, “
Numerical and Experimental Investigation of the Fluid Flow on a Full-Scale Pump Jet Thruster
,”
Ocean Eng.
,
182
, pp.
527
539
.10.1016/j.oceaneng.2019.04.047
10.
Ivanell
,
S.
,
2001
,
Hydrodynamic Simulation of a Torpedo With Pumpjet Propulsion System
,
Royal Institute of Technology
,
Stockholm, Sweden
.
11.
Pan
,
G.
,
Lu
,
L.
, and
Sahoo
,
P. K.
,
2015
, “
Numerical Simulation of Unsteady Cavitating Flows of Pumpjet Propulsor
,”
Ships Offshore Struct.
,
11
(
1
), pp.
1
74
.10.1080/17445302.2014.992608
12.
Sun
,
Y.
,
Liu
,
W.
, and
Li
,
T.-y.
,
2019
, “
Numerical Investigation on Noise Reduction Mechanism of Serrated Trailing Edge Installed on a Pump-Jet Duct
,”
Ocean Eng.
,
191
, p.
106489
.10.1016/j.oceaneng.2019.106489
13.
Qin
,
D.
,
Pan
,
G.
,
Lee
,
S.
,
Huang
,
Q.
, and
Shi
,
Y.
,
2019
, “
Underwater Radiated Noise Reduction Technology Using Sawtooth Duct for Pumpjet Propulsor
,”
Ocean Eng.
,
188
, p.
106228
.10.1016/j.oceaneng.2019.106228
14.
Ji
,
X.-Q.
,
Yang
,
C.-J.
, and
Dong
,
X.-Q.
,
2020
, “
Numerical Design Study of Duct and Stator for a Pump-Jet Propulsor
,”
ASME
Paper No. OMAE2020-18535.10.1115/OMAE2020-18535
15.
Li
,
H.
,
Huang
,
Q.
,
Pan
,
G.
, and
Dong
,
X.
,
2020
, “
The Transient Prediction of a Pre-Swirl Stator Pump-Jet Propulsor and a Comparative Study of Hybrid Rans/Les Simulations on the Wake Vortices
,”
Ocean Eng.
,
203
, p.
107224
.10.1016/j.oceaneng.2020.107224
16.
Shi
,
Y.
,
Pan
,
G.
,
Huang
,
Q.
, and
Du
,
X.
,
2015
, “
Numerical Simulation of Cavitation Characteristics for Pump-Jet Propeller
,”
J. Phys.: Conf. Ser.
,
640
, p.
012035
.10.1088/1742-6596/640/1/012035
17.
Wang
,
C.
,
Weng
,
K.
,
Guo
,
C.
,
Chang
,
X.
, and
Gu
,
L.
,
2020
, “
Analysis of Influence of Duct Geometrical Parameters on Pump Jet Propulsor Hydrodynamic Performance
,”
J. Mar. Sci. Technol.
,
25
(
2
), pp.
640
657
.10.1007/s00773-019-00662-z
18.
Huang
,
Q.
,
Li
,
H.
,
Pan
,
G.
, and
Dong
,
X.
,
2021
, “
Effects of Duct Parameter on Pump-Jet Propulsor Unsteady Hydrodynamic Performance
,”
Ocean Eng.
,
221
, p.
108509
.10.1016/j.oceaneng.2020.108509
19.
Yu
,
H.
,
Duan
,
N.
,
Hua
,
H.
, and
Zhang
,
Z.
,
2020
, “
Propulsion Performance and Unsteady Forces of a Pump-Jet Propulsor With Different Pre-Swirl Stator Parameters
,”
Appl. Ocean Res.
,
100
, p.
102184
.10.1016/j.apor.2020.102184
20.
Yu
,
H.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2019
, “
Numerical Investigation of Tip Clearance Effects on Propulsion Performance and Pressure Fluctuation of a Pump-Jet Propulsor
,”
Ocean Eng.
,
192
, p.
106500
.10.1016/j.oceaneng.2019.106500
21.
Li
,
H.
,
Pan
,
G.
, and
Huang
,
Q.
,
2019
, “
Transient Analysis of the Fluid Flow on a Pumpjet Propulsor
,”
Ocean Eng.
,
191
, p.
106520
.10.1016/j.oceaneng.2019.106520
22.
Yuan
,
J.
,
Chen
,
Y.
,
Wang
,
L.
,
Fu
,
Y.
,
Zhou
,
Y.
,
Xu
,
J.
, and
Lu
,
R.
,
2020
, “
Dynamic Analysis of Cavitation Tip Vortex of Pump-Jet Propeller Based on Des
,”
Appl. Sci.
,
10
(
17
), p.
5998
.10.3390/app10175998
23.
Wang
,
C.
,
Weng
,
K.
,
Guo
,
C.
, and
Gu
,
L.
,
2019
, “
Prediction of Hydrodynamic Performance of Pump Propeller Considering the Effect of Tip Vortex
,”
Ocean Eng.
,
171
, pp.
259
272
.10.1016/j.oceaneng.2018.10.039
24.
Huyer
,
S. A.
, and
Dropkin
,
A.
,
2011
, “
Integrated Motor/Propulsor Duct Optimization for Increased Vehicle and Propulsor Performance
,”
ASME J. Fluids Eng.
,
133
(
4
), p. 041102.10.1115/1.4004006
25.
Bhattacharyya
,
A.
, and
Steen
,
S.
,
2014
, “
Propulsive Factors in Waves: A Comparative Experimental Study for an Open and a Ducted Propeller
,”
Ocean Eng.
,
91
, pp.
263
272
.10.1016/j.oceaneng.2014.09.020
26.
Chase
,
N.
, and
Carrica
,
P. M.
,
2013
, “
Submarine Propeller Computations and Application to Self-Propulsion of Darpa Suboff
,”
Ocean Eng.
,
60
, pp.
68
80
.10.1016/j.oceaneng.2012.12.029
27.
Özden
,
M. C.
,
Gürkan
,
A. Y.
,
Özden
,
Y. A.
,
Canyurt
,
T. G.
, and
Korkut
,
E.
,
2016
, “
Underwater Radiated Noise Prediction for a Submarine Propeller in Different Flow Conditions
,”
Ocean Eng.
,
126
, pp.
488
500
.10.1016/j.oceaneng.2016.06.012
28.
Sezen
,
S.
,
Dogrul
,
A.
,
Delen
,
C.
, and
Bal
,
S.
,
2018
, “
Investigation of Self-Propulsion of Darpa Suboff by Rans Method
,”
Ocean Eng.
,
150
, pp.
258
271
.10.1016/j.oceaneng.2017.12.051
29.
Huang
,
T. T.
,
Liu
,
H.-L.
, and
Groves
,
N. C.
,
1989
, “
Experiments of the Darpa (Defense Advanced Research Projects Agency) Suboff Program
,” David Taylor Research Center Ship Hydromechanics Department, Bethesda MD, Report No. DTRC/SHD-1298-02.
30.
Groves
,
N. C.
,
Huang
,
T. T.
, and
Chang
,
M. S.
,
1989
, “
Geometric Characteristics of Darpa (Defense Advanced Research Projects Agency) Suboff Models (Dtrc Model Numbers 5470 and 5471)
,” David Taylor Research Center, Ship Hydromechanics Department, Bethesda MD, Report No. DTRC/SHD-1298-01.
31.
Li
,
H.
,
Huang
,
Q.
,
Pan
,
G.
, and
Dong
,
X.
,
2021
, “
Assessment of Transition Modeling for the Unsteady Performance of a Pump-Jet Propulsor in Model Scale
,”
Appl. Ocean Res.
,
108
, p.
102537
.10.1016/j.apor.2021.102537
32.
Spalart
,
P. R.
,
1997
, “
Comments on the Feasibility of Les for Wings, and on a Hybrid Rans/Les Approach
,”
Proceedings of First AFOSR International Conference on DNS/LES
,
Greyden Press
, Ruston, LA, Aug. 4–8, p.
1
.https://www.researchgate.net/publication/236888805_Comments_on_the_Feasibility_of_LES_for_Wings_and_on_a_Hybrid_RANSLES_Approach
33.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
39th Aerospace Sciences Meeting and Exhibit
, San Antonio, TX, June 22–25, p.
879
.10.2514/6.2001-879
34.
Deck
,
S.
,
2012
, “
Recent Improvements in the Zonal Detached Eddy Simulation (Zdes) Formulation
,”
Theor. Comput. Fluid Dyn.
,
26
(
6
), pp.
523
550
.10.1007/s00162-011-0240-z
35.
Deck
,
S.
, and
Renard
,
N.
,
2020
, “
Towards an Enhanced Protection of Attached Boundary Layers in Hybrid Rans/Les Methods
,”
J. Comput. Phys.
,
400
, p.
108970
.10.1016/j.jcp.2019.108970
36.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
37.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of Ddes and Iddes Formulations for the k-ω Shear Stress Transport Model
,”
Flow, Turbul. Combust.
,
88
(
3
), pp.
431
449
.10.1007/s10494-011-9378-4
38.
Long
,
Y.
,
Han
,
C.
,
Long
,
X.
,
Ji
,
B.
, and
Huang
,
H.
,
2021
, “
Verification and Validation of Delayed Detached Eddy Simulation for Cavitating Turbulent Flow Around a Hydrofoil and a Marine Propeller Behind the Hull
,”
Appl. Math. Modell.
,
96
, pp.
382
401
.10.1016/j.apm.2021.03.018
39.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow, Turbul. Combust.
,
95
(
4
), pp.
583
619
.10.1007/s10494-015-9622-4
40.
Chase
,
N.
,
2012
, “
Simulations of the Darpa Suboff Submarine Including Self-Propulsion With the e1619 Propeller
,” Ph.D. thesis,
University of Iowa
, Iowa City, IA.
41.
Liu
,
H.-L.
, and
Huang
,
T. T.
,
1998
, “
Summary of Darpa Suboff Experimental Program Data
,” Naval Surface Warfare Center Carderock Division, West Bethesda, MD, Report No.
CRDKNSWC/HD-1298-11
.https://apps.dtic.mil/sti/citations/ADA359226
42.
Bhushan
,
S.
,
Alam
,
M.
, and
Walters
,
D.
,
2013
, “
Evaluation of Hybrid Rans/Les Models for Prediction of Flow Around Surface Combatant and Suboff Geometries
,”
Comput. Fluids
,
88
, pp.
834
849
.10.1016/j.compfluid.2013.07.020
43.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys. Mech. Astron.
,
59
(
8
), pp.
1
9
.10.1007/s11425-015-5107-0
44.
Liu
,
J.-M.
,
Wang
,
Y.-Q.
,
Gao
,
Y.-S.
, and
Liu
,
C.
,
2019
, “
Galilean Invariance of Omega Vortex Identification Method
,”
J. Hydrodyn.
,
31
(
2
), pp.
249
255
.10.1007/s42241-019-0024-2
You do not currently have access to this content.