Abstract

Stall in centrifugal pumps is a complicated flow phenomenon, which is detrimental to the pumps' safety and stable operation. Using a high-frequency particle image velocimetry (PIV) system (f = 10k Hz) and a bench-scale refractive index matching experimental setup, two measurement methods are introduced to observe the dynamic stall inception and evolution. In the first method, the flow rate was continuously reduced at an interval of 0.005Qd, and the experiment was carried out under stable flow rate condition. It shows the flow adjacent to the blade suction side gradually evolved from the flow separation into a broken vortex. The stall vortex moved toward the impeller's inlet and continuously grew, and resulted in significant changes in the main flow direction at the channel inlet. The formation and development of the other vortex structures in channel were closely related to the stall vortex at the inlet. The second method is the dynamic flow rate measurement, and the results show that the stall is not caused by the increase in the relative inflow angle. It was obtained that the velocity value in the stall channel near the suction side rapidly decreased; however in the nonstall channel, the velocity value increased at the channel inlet. By analyzing the velocity distribution in both flow channels before and after the stall, the mechanism of alternating stall is well explained. Meanwhile, it was obtained that the stall was more likely to originate from the flow separation near the blade suction side for low specific speed impeller.

References

1.
Hong
,
W.
, and
Tsukamoto
,
H.
,
2003
, “
Experimental and Numerical Study of Unsteady Flow in a Diffuser Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
767
778
.10.1115/1.1603305
2.
Lennemann
,
E.
, and
Howard
,
J. H. G.
,
1970
, “
Unsteady Flow Phenomena in Rotating Centrifugal Impeller Channels
,”
ASME J. Eng. Power
,
92
(
1
), pp.
65
71
.10.1115/1.3445302
3.
Guo
,
S. J.
, and
Maruta
,
Y.
,
2005
, “
Experimental Investigations on Pressure Fluctuations and Vibration of the Impeller in a Centrifugal Pump With Vaned Diffusers
,”
JSME Int. J. Ser. B: Fluids Therm. Eng.
,
48
(
1
), pp.
136
143
.10.1299/jsmeb.48.136
4.
Tanaka
,
H.
,
2011
, “
Vibration Behavior and Dynamic Stress of Runners of Very High Head Reversible Pump-Turbines
,”
Int. J. Fluid Mach. Syst.
,
4
(
2
), pp.
289
306
.10.5293/IJFMS.2011.4.2.289
5.
Krause
,
N.
,
Zähringer
,
K.
, and
Pap
,
E.
,
2005
, “
Time-Resolved Particle Imaging Velocimetry for the Investigation of Rotating Stall in a Radial Pump
,”
Exp. Fluids
,
39
(
2
), pp.
192
201
.10.1007/s00348-005-0935-2
6.
Ye
,
W. X.
,
Zhu
,
Z. C.
,
Qian
,
Z. D.
, and
Luo
,
X. W.
,
2020
, “
Numerical Analysis of Unstable Turbulent Flows in a Centrifugal Pump Impeller Considering the Curvature and Rotation Effect
,”
J. Mech. Sci. Technol.
,
34
(
7
), pp.
2869
2881
.10.1007/s12206-020-0619-0
7.
Luo
,
H. Y.
,
Tao
,
R.
,
Yang
,
J. D.
, and
Wang
,
Z. W.
,
2020
, “
Influence of Blade Leading-Edge Shape on Rotating-Stalled Flow Characteristics in a Centrifugal Pump Impeller
,”
Appl. Sci.
,
10
(
16
), p.
5635
.10.3390/app10165635
8.
Sinha
,
M.
, and
Katz
,
J.
,
2000
, “
Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes—I: On Flow Structures and Turbulence
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
97
107
.10.1115/1.483231
9.
Paone
,
N.
,
Riethmuller
,
M. L.
, and
Braembussche
,
R. A.
,
1989
, “
Experimental Investigation of the Flow in the Vaneless Diffuser of a Centrifugal Pump by Particle Image Displacement Velocimetry
,”
Exp. Fluids
,
7
(
6
), pp.
371
378
.10.1007/BF00193417
10.
Zwingenberg
,
M.
, and
Benra
,
F. K.
,
2006
, “
Measurement of the Periodic Unsteady Flow in a Single-Blade Centrifugal Pump by PIV-Method
,”
WSEAS Trans. Fluid Mech.
,
1
(
6
), pp.
714
719
.https://fjour.blyun.com/views/specific/3004/FJourDetail.jsp?dxNumber=165014324408&d=1EB8A5B6032687A563BF9B4426FB2F02&s
11.
Feng
,
J.
,
Benra
,
F. K.
, and
Dohmen
,
H. J.
,
2009
, “
Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD
,”
J. Visualization
,
12
(
1
), pp.
65
72
.10.1007/BF03181944
12.
Wang
,
Z. Y.
,
Qian
,
Z. D.
,
Lu
,
J.
, and
Wu
,
P. F.
,
2019
, “
Effects of Flow Rate and Rotational Speed on Pressure Fluctuations in a Double-Suction Centrifugal Pump
,”
Energy
,
170
, pp.
212
227
.10.1016/j.energy.2018.12.112
13.
Zhao
,
X. R.
,
Xiao
,
Y. X.
,
Wang
,
Z. W.
,
Luo
,
Y. Y.
, and
Cao
,
L.
,
2018
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.10.1115/1.4037973
14.
Gao
,
B.
,
Guo
,
P. G.
,
Zhang
,
N.
,
Li
,
Z.
, and
Yang
,
M. G.
,
2017
, “
Unsteady Pressure Pulsation Measurements and Analysis of a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
139
(
7
), p.
071101
.10.1115/1.4036157
15.
Akinori
,
F.
, and
Hisasada
,
T.
,
2003
, “
Pressure Fluctuation in a Vaned Diffuser Downstream From a Centrifugal Pump Impeller
,”
Int. J. Rotating Mach.
,
9
(
4
), p.
907631
.10.1155/S1023621X03000265
16.
Yang
,
H.
,
Gu
,
C. G.
, and
Wang
,
T.
,
2005
, “
Two-Dimensional Particle Image Velocimetry (PIV) Measurements in a Transparent Centrifugal Pump
,”
Chin. J. Mech. Eng.
,
18
(
1
), pp.
98
102
.10.3901/CJME.2005.01.098
17.
Sinha
,
M.
,
Pinarbasi
,
A.
, and
Katz
,
J.
,
2001
, “
The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
490
499
.10.1115/1.1374213
18.
Zhang
,
J. F.
,
Wang
,
Y. F.
, and
Yuan
,
S. Q.
,
2016
, “
Experimental Research on Internal Flow in Impeller of a Low Specific Speed Centrifugal Pump by PIV
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
129
(
1
), p.
012013
.10.1088/1757-899X/129/1/012013
19.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part I: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.10.1115/1.1524585
20.
Wu
,
D. H.
,
Yun
,
R.
,
Liu
,
H. L.
,
Mu
,
J. G.
, and
Jiang
,
L. F.
,
2014
, “
Experimental Investigation on Characteristics of Flow Instabilities in Centrifugal Pump Impeller Under Part-Load Conditions
,”
Adv. Mech. Eng.
,
2014
, p.
604812
.10.1155/2014/604812
21.
Zhang
,
N.
,
Gao
,
B.
,
Li
,
Z.
,
Ni
,
D.
, and
Jiang
,
Q. F.
,
2018
, “
Unsteady Flow Structure and Its Evolution in a Low Specific Speed Centrifugal Pump Measured by PIV
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
133
144
.10.1016/j.expthermflusci.2018.04.013
22.
Yan
,
P.
, and
Wang
,
H.
,
2019
, “
Analysis of Vortices Formed in Flow Channel of a Five-Bladed Centrifugal Water Pump by Means of PIV Method
,”
AIP Adv.
,
9
, p.
075011
.10.1063/1.5099530
23.
Li
,
X. J.
,
Chen
,
B.
,
Luo
,
X. W.
, and
Zhu
,
Z. C.
,
2020
, “
Effects of Flow Pattern on Hydraulic Performance and Energy Conversion Characterisation in a Centrifugal Pump
,”
Renewable Energy
,
151
, pp.
475
487
.10.1016/j.renene.2019.11.049
24.
Wu
,
Y. L.
,
Liu
,
S. H.
,
Yuan
,
H. J.
, and
Shao
,
J.
,
2011
, “
PIV Measurement on Internal Instantaneous Flows of a Centrifugal Pump
,”
Sci. China Technol. Sci.
,
54
(
2
), pp.
270
276
.10.1007/s11431-010-4262-3
25.
Wu
,
Y.
,
Yuan
,
H.
,
Shao
,
J.
, and
Liu
,
S.
,
2009
, “
Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement
,”
Int. J. Fluid Mach. Syst.
,
2
(
2
), pp.
121
126
.10.5293/IJFMS.2009.2.2.121
26.
Keller
,
J.
,
Blanco
,
E.
,
Barrio
,
R.
, and
Parrondo
,
J.
,
2014
, “
PIV Measurements of the Unsteady Flow Structures in a Volute Centrifugal Pump at a High Flow Rate
,”
Exp. Fluids
,
55
(
10
), pp.
1
14
.10.1007/s00348-014-1820-7
27.
Dazin
,
A.
,
Cavazzini
,
G.
,
Pavesi
,
G.
,
Dupont
,
P.
,
Coudert
,
S.
,
Ardizzon
,
G.
,
Caignaert
,
G.
, and
Bois
,
G.
,
2011
, “
High-Speed Stereoscopic PIV Study of Rotating Instabilities in a Radial Vaneless Diffuser
,”
Exp. Fluids
,
51
(
1
), pp.
83
93
.10.1007/s00348-010-1030-x
28.
Liu
,
X. D.
,
Yan
,
T. T.
,
Zhong
,
Q.
,
Liu
,
Z. Q.
,
Wang
,
F. J.
,
Li
,
Y. J.
, and
Yang
,
W.
,
2021
, “
Comparison of Image Masking Methods for Pump Impeller Blade Region PIV Experiments
,”
J. Mech. Sci. Technol.
,
35
(
6
), pp.
2513
2521
.10.1007/s12206-021-0522-3
29.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
You do not currently have access to this content.