Abstract

The inducers increase the pressure available at the inlet of the impellers of centrifugal pumps. This technological solution may induce instabilities, such as prerotating flow at partial flow rates. The scientific literature offers studies on the cavitation in the inducers, as well as on the associated instabilities. However, studies describing devices that improve the behavior in these unstable regimes are rare. This is particularly true for fluids like aviation fuels or liquids with dissolved gases. In this work we expose, an experimental study for two axial inducers carried out at low flow rates in cavitating and noncavitating regimes in a closed-loop equipped with a transparent test pipe. The working liquid is water with and without dissolved CO2. We employ a camera and a high-speed camera to take the photographs of the dynamics of the cavitation structures. The experimental campaign provided results of head breakdown comparison. The added dissolved CO2 gas at a concentration of 300 mg L–1 does not change the overall inducers' performance in noncavitating regime. The paper presents also the impact of some of inducers' geometrical parameters on their cavitating performance. The authors observed prerotating flow instability, which they tried to decrease by incorporating a grooved ring into the inlet side of the inducers. It is found that prerotating structures are much less developed in the upstream when a grooved ring is employed.

References

1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Oxford University Press
, Oxford, UK.
2.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
3.
Young
,
W. E.
,
Murphy
,
R.
, and
Reddecliff
,
J.
,
1972
, “
Study of Cavitating Inducer Instabilities
,” NASA, Washington, DC, Report No. NASA-CR-123939, PWA-FR-
5131.
4.
Tomaru
,
H.
,
Ugajin
,
H.
,
Kawasaki
,
S.
, and
Nakano
,
M.
,
2007
, “
Suppresson of Cavitation Surge in a Turbopump Inducer by the Backflow Restriction Step
,” 43rd AIAA/ASME/SAE, ASEE Joint Propulsion Conference & Exhibit, Cincinnati, OH, July 8–11,
AIAA
Paper No. 2007-5538.10.2514/6.2007-5538
5.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of le-7 Lox Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
6.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
M.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluid Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
7.
D'Agostino
,
L.
,
2017
, “
Experimental Characterization of Cavitation-Induced Flow Instabilities and Dynamics in the Statoric and Rotating Frames of a Three-Bladed Axial Inducer
,” 14th Asian International Conference on Fluid Machinery (
AICFM14-2017
), Jiangsu University, Zhenjiang, China.10.1007/s10033-XXX-XXXX-X
8.
Kim
,
J.-H.
,
Atono
,
T.
,
Ishizaka
,
K.
,
Watanabe
,
S.
, and
Furukawa
,
A.
,
2008
, “
Rotating Behavior Observation of Cavitation in Inducer With Suction Axi-Asymmetrical Plate
,”
J. Fluid Sci. Technol.
,
3
(
6
), pp.
744
753
.10.1299/jfst.3.744
9.
Shimiya
,
N.
,
Fujii
,
A.
,
Horiguchi
,
H.
,
Kurokawa
,
M. U. J.
, and
Tsujimoto
,
Y.
,
2008
, “
Suppression of Cavitation Instabilities in an Inducer by J Groove
,”
ASME J. Fluid Eng.
,
130
(
2
), p. 021302.10.1115/1.2829582
10.
Kang
,
D.
,
Watanabe
,
T.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2010
, “
Inducer Design to Avoid Cavitation Instabilities
,”
AIP Conf. Proc.
,
1225
(
1
), pp.
433
446
.10.5293/IJFMS.2009.2.4.439
11.
Imamura
,
H.
,
Kurokawa
,
J.
,
Matsui
,
J.
, and
Kikuchi
,
M.
,
2003
, “
Suppression of Cavitating Flow in Inducer by J-Groove
,”
CAV2003, Fifth International Symposium on Cavitation
, Osaka, Japan, pp.
776
781
.10.1299/jsmemecjo.2003.2.0_35
12.
Choi
,
Y.-D.
,
Kurokawa
,
J.
, and
Imamura
,
H.
,
2007
, “
Suppression of Cavitation in Inducers by J-Grooves
,”
ASME J. Fluid Eng.
,
129
(
1
), pp.
15
22
.10.1115/1.2375126
13.
Saha
,
S.-L.
,
Kurokawa
,
J.
,
Matsui
,
J.
, and
Imamura
,
H.
,
2000
, “
Suppression of Performance Curve Instability of a Mixed Flow Pump by Use of J-Groove
,”
ASME J. Fluid Eng.
,
122
(
3
), pp.
592
597
.10.1115/1.1287855
14.
Japikse
,
D.
,
2001
, “
Overview of Industrial and Rocket Turbopump Inducer Design
,”
CAV 2001: Fourth International Symposium on Cavitation
,
California Institute of Technology
,
Pasadena, CA, June 20–23
.https://core.ac.uk/download/pdf/9412487.pdf
15.
Acosta
,
A. J.
,
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Azuma
,
S.
, and
Cooper
,
P.
,
2001
, “
Effects of Leading Edge Sweep on the Cavitating Characteristics of Inducer Pumps
,”
Int. J. Rotating Mach.
,
7
(
6
), pp.
397
404
.10.1155/S1023621X01000343
16.
Torre
,
L.
,
Pasini
,
A.
,
Cervone
,
A.
,
Pace
,
G.
,
Miloro
,
P.
, and
d'Agostino
,
L.
,
2011
, “
Effect of Tip Clearance on the Performance of a Three-Bladed Axial Inducer
,”
J. Propul. Power
,
27
(
4
), pp.
890
898
.10.2514/1.B34067
17.
Stangeland
,
M. L.
,
2006
, “
Inducer Tip Vortex Suppressor
,” Patent U.S. 7097414.
18.
Magne
,
T.
,
Paridaens
,
R.
,
Khelladi
,
S.
,
Bakir
,
F.
,
Tomov
,
P.
, and
Pora
,
L.
,
2019
, “
Effect of Gas Content on the Cavitating and Non-Cavitating Performance of an Axial Three-Bladed Inducer
,”
International Conference of Multiphase Flow
, Rio de Janeiro, Brazil, May 19–24, pp.
81
92
.10.1615/MultScienTechn.2020031533
19.
Magne
,
T.
,
Paridaens
,
R.
,
Khelladi
,
S.
,
Bakir
,
F.
,
Tomov
,
P.
, and
Pora
,
L.
,
2020
, “
Experimental Study of the Hydraulic Performances of Two Three-Bladed Inducers in Water, Water With Dissolved CO2, and Jet Fuel
,”
ASME J. Fluid Eng.
,
142
(
11
), p.
111210
.10.1115/1.4048143
20.
Kim
,
J.
, and
Song
,
S. J.
,
2019
, “
Visualization of Rotating Cavitation Oscillation Mechanism in a Turbopump Inducer
,”
ASME J. Fluid Eng.
,
141
(
9
), p.
091103
.10.1115/1.4042884
21.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
2003
, “
Experimental Analysis of an Axial Inducer Influence of the Shape of the Blade Leading Edge on the Performances in Cavitating Regime
,”
ASME J. Fluid Eng.
,
125
(
2
), pp.
293
301
.10.1115/1.1539872
22.
Doorne
,
C. V.
,
1998
, “
Flow and Cavitation in Inducers
,” Ph.D. thesis,
Department of Applied Physics, Delft University of Technology
, Delft, The Netherlands.
23.
Hong
,
S.-S.
,
Choi
,
C.-H.
, and
Kim
,
J.-H.
,
2004
, “
Effect of Solidity on the Performance of Turbopump Inducer
,”
Trans. Korean Soc. Mech. Eng. B
,
28
(
4
), pp.
382
388
.10.3795/KSME-B.2004.28.4.382
24.
Choi
,
C.-H.
,
Kim
,
J.-S.
, and
Kim
,
J.-H.
,
2009
, “
Study on the Forward-Sweep Inducer for Lre Turbopumps
,”
Acta Astronaut.
,
65
(
1–2
), pp.
214
220
.10.1016/j.actaastro.2009.01.044
25.
Cheng
,
X.
,
Li
,
Y.
, and
Zhang
,
S.
,
2019
, “
Effect of Inlet Sweepback Angle on the Cavitation Performance of an Inducer
,”
Eng. Appl. Comput. Fluid Mech.
,
13
(
1
), pp.
713
723
.10.1080/19942060.2019.1640134
26.
Carpenter
,
S.
,
1957
, “
Performance of Cavitating Axial Inducers with Varying Tip Clearance and Solidity
,” Ph.D. thesis,
California Institute of Technology
, Pasadena, CA.
27.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Torre
,
L.
,
Fu
,
Y.
, and
d'Agostino
,
L.
,
2015
, “
Geometry Effects on Flow Instabilities of Different Three-Bladed Inducers
,”
ASME J. Fluid Eng.
,
137
(
4
), p.
041304
.10.1115/1.4029113
28.
Kurokawa
,
J.
,
2011
, “
J-Groove Technique for Suppressing Various Anomalous Flow Phenomena in Turbomachines
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
1
13
.10.5293/IJFMS.2011.4.1.001
29.
Pasini
,
A.
,
Hadavandi
,
R.
,
Valentini
,
D.
,
Pace
,
G.
, and
D'Agostino
,
L.
,
2018
, “
Dynamics of the Blade Channel of an Inducer Under Cavitation-Induced Instabilities
,”
ASME J. Fluid Eng.
,
141
(
4
), p.
041103
.10.1115/1.4041728
30.
Yamamoto
,
K.
, and
Tsujimoto
,
Y.
,
2009
, “
Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
40
54
.10.5293/IJFMS.2009.2.1.040
You do not currently have access to this content.