Abstract

Digital inline holography (DIH) is a three-dimensional (3D) measurement technique widely used in the characterizations of particles, droplets, and bubbly flows. When collimated coherent light passes an object field, the disturbed and undisturbed components will superimpose at the imaging plane and form an interference pattern (hologram) due to their phase variation. By analyzing the phase information encoded in the hologram, the shapes and locations of objects can be reconstructed. However, the reconstruction produces higher levels of uncertainty along the line of sight, which is the out-of-plane direction normal to the imaging plane. Additionally, the reconstructions algorithm cannot resolve structures blocked by other features along the recording path. To overcome these limitations, prior works have implemented DIH from two to three views on simple geometries. In this work, multiview digital inline holography is presented with (3) views to enable the reconstruction of 3D structures with complex surface topologies, including ligaments and droplets during the primary liquid breakup. The approach is similar to DIH but with a different postprocessing method that combines the information on 3D edge outlines extracted from different DIH viewing angles. Two reconstruction approaches, an outline-based method, and another cross section-based method, are developed and applied on holograms of a 3D-printed test model imitating droplet breakup. With only three views, both methods provide limited reconstruction results with various artifacts. The outline-based method uses more spatial information but, due to practical limitations, results in lower-fidelity reconstructions than the cross section-based method. In general, DIH reconstructions struggle with concave structures even with more than six views due to shadowing of obstructed structures. However, when the number of views increases to six, the cross section-based reconstruction method yields morphological details close to the test model.

References

1.
Lefebvre
,
A. H.
, and
Mcdonell
,
V. G.
,
2017
,
Atomization and Sprays
, 2nd ed.,
CRC Press
, Portland, OR.
2.
Gad-El-Hak
,
M.
,
2016
, “
Nine Decades of Fluid Mechanics
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
100802
.10.1115/1.4033961
3.
Obenauf
,
D.
,
Yao
,
L.
,
Shang
,
W.
,
Sojka
,
P. E.
, and
Chen
,
J.
,
2019
, “
Effect of Reduced Surface Tension on Size and Velocity Distributions of Ethanol-Water Drop Fragments Formed Via Multi-Mode and Sheet-Thinning Breakup
,”
AIAA
Paper No.2019-4333.10.2514/6.2019-4333
4.
Guildenbecher
,
D. R.
,
López-Rivera
,
C.
, and
Sojka
,
P. E.
,
2009
, “
Secondary Atomization
,”
Exp. Fluids
,
46
(
3
), pp.
371
402
.10.1007/s00348-008-0593-2
5.
Fansler
,
T. D.
, and
Parrish
,
S. E.
,
2015
, “
Spray Measurement Technology: A Review
,”
Meas. Sci. Technol.
,
26
(
1
), p.
012002
.10.1088/0957-0233/26/1/012002
6.
Halls
,
B. R.
,
Rahman
,
N.
,
Slipchenko
,
M. N.
,
James
,
J. W.
,
McMaster
,
A.
,
Ligthfoot
,
M. D. A.
,
Gord
,
J. R.
, and
Meyer
,
T. R.
,
2019
, “
4D Spatiotemporal Evolution of Liquid Spray Using Kilohertz-Rate x-Ray Computed Tomography
,”
Opt. Lett.
,
44
(
20
), pp.
5013
5016
.10.1364/OL.44.005013
7.
Du
,
J.
,
Zang
,
G.
,
Mohan
,
B.
,
Idoughi
,
R.
,
Sim
,
J.
,
Fang
,
T.
,
Wonka
,
P.
,
Heidrich
,
W.
, and
Roberts
,
W. L.
,
2020
, “
Study of Spray Structure From Non-Flash to Flash Boiling Conditions With Space-Time Tomography
,”
Proc. Combust. Inst.
,
06
(
17
), pp.
1
9
.10.1016/j.proci.2020.06.171
8.
Gomez
,
M.
,
Braun
,
A. M.
,
Slipchenko
,
M. N.
,
Roy
,
S.
, and
Meyer
,
T. R.
,
2022
, “
Time-Resolved Volumetric (4D) Laser-Induced Fluorescence Imaging of Primary Spray Breakup
,”
AIAA
SciTech 2022 Forum, San Diego, CA, pp.
1
10
.10.2514/6.2022-0559
9.
Gao
,
J.
,
Guildenbecher
,
D. R.
,
Reu
,
P. L.
,
Kulkarni
,
V.
,
Sojka
,
P. E.
, and
Chen
,
J.
,
2013
, “
Quantitative, Three-Dimensional Diagnostics of Multiphase Drop Fragmentation Via Digital in-Line Holography
,”
Opt. Lett.
,
38
(
11
), pp.
1893
1895
.10.1364/OL.38.001893
10.
Guildenbecher
,
D. R.
,
Gao
,
J.
,
Chen
,
J.
, and
Sojka
,
P. E.
,
2017
, “
Characterization of Drop Aerodynamic Fragmentation in the Bag and Sheet-Thinning Regimes by Crossed-Beam, Two-View, Digital in-Line Holography
,”
Int. J. Multiphase Flow
,
94
(
C
), pp.
107
122
.10.1016/j.ijmultiphaseflow.2017.04.011
11.
Yao
,
L.
,
Chen
,
J.
,
Sojka
,
P. E.
,
Wu
,
X.
, and
Cen
,
K.
,
2018
, “
Three-Dimensional Dynamic Measurement of Irregular Stringy Objects Via Digital Holography
,”
Opt. Letters
,
43
(
6
), pp.
1283
1286
.10.1364/OL.43.001283
12.
Kumar
,
S. S.
,
Li
,
C.
,
Christen
,
C. E.
,
Hogan
,
C. J.
,
Fredericks
,
S. A.
, and
Hong
,
J.
,
2019
, “
Automated Droplet Size Distribution Measurements Using Digital Inline Holography
,”
J. Aerosol Sci.
,
137
, p.
105442
.10.1016/j.jaerosci.2019.105442
13.
Yu
,
P.-W.
, and
Ceccio
,
S. L.
,
1997
, “
Diffusion Induced Bubble Populations Downstream of a Partial Cavity
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
782
787
.10.1115/1.2819498
14.
Ezra
,
E.
,
Keinan
,
E.
,
Liberzon
,
A.
, and
Nahmias
,
Y.
,
2016
, “
Development of Three-Dimensional Streamline Image Velocimetry Using Superimposed Delaunay Triangulation and Geometrical Fitting
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011205
.10.1115/1.4031611
15.
Li
,
X. B.
,
Oishi
,
M.
,
Matsuo
,
T.
,
Oshima
,
M.
, and
Li
,
F. C.
,
2016
, “
Measurement of Viscoelastic Fluid Flow in the Curved Microchannel Using Digital Holographic Microscope and Polarized Camera
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091401
.10.1115/1.4033319
16.
Guildenbecher
,
D. R.
,
Cooper
,
M. A.
, and
Sojka
,
P. E.
,
2016
, “
High-Speed (20 kHz) Digital in-Line Holography for Transient Particle Tracking and Sizing in Multiphase Flows
,”
Appl. Opt.
,
55
(
11
), p.
2892
.10.1364/AO.55.002892
17.
Soria
,
J.
, and
Atkinson
,
C.
,
2008
, “
Towards 3C-3D Digital Holographic Fluid Velocity Vector Field Measurement–Tomographic Digital Holographic PIV (TOMO-HPIV)
,”
Meas. Sci. Technol.
,
19
(
7
), p.
074002
.10.1088/0957-0233/19/7/074002
18.
Gao
,
J.
,
Guildenbecher
,
D. R.
,
Reu
,
P. L.
, and
Chen
,
J.
,
2013
, “
Uncertainty Characterization of Particle Depth Measurement Using Digital In-Line Holography and the Hybrid Method
,”
Opt. Exp.
,
21
(
22
), pp.
26432
26449
.10.1364/OE.21.026432
19.
Buchmann
,
N. A.
,
Atkinson
,
C.
, and
Soria
,
J.
,
2012
, “
Ultra-High-Speed Tomographic Digital Holographic Velocimetry in Supersonic Particle-Laden Jet Flows
,”
Meas. Sci. Technol.
,
24
(
2
), p.
24005
.10.1088/0957-0233/24/2/024005
20.
Schnars
,
U.
,
2005
,
Digital Holography Digital Hologram Recording, Numerical Reconstruction, and Related Techniques
, 1st ed.,
Springer
,
Berlin, Germany
.
21.
Lauriola
,
D.
,
Meyer
,
T. R.
,
Gomez
,
M.
,
Roy
,
S.
,
Slipchenko
,
M. N.
,
Gord
,
J. R.
, and
Son
,
S. F.
,
2018
, “
KHz–MHz Rate Laser-Based Tracking of Particles and Product Gases for Multiphase Blast Fields
,” 2018 IEEE Research and Applications of Photonics in Defense Conference (
RAPID
),
IEEE
, Miramar Beach, FL, Aug. 22–24, pp.
1
4
.10.1109/RAPID.2018.8508993
22.
Lauriola
,
D. K.
,
Gomez
,
M.
,
Meyer
,
T. R.
,
Son
,
S. F.
,
Slipchenko
,
M.
, and
Roy
,
S.
,
2019
, “
High Speed Particle Image Velocimetry and Particle Tracking Methods in Reactive and Non-Reactive Flows
,”
AIAA
Paper No. 2019-1605.10.2514/6.2019-1605
23.
Elsinga
,
G. E.
,
Scarano
,
F.
,
Wieneke
,
B.
, and
Van Oudheusden
,
B. W.
,
2006
, “
Tomographic Particle Image Velocimetry
,”
Exp. Fluids
,
41
(
6
), pp.
933
947
.10.1007/s00348-006-0212-z
You do not currently have access to this content.