Abstract

A combined volume of fluid and immersed boundary method is developed to simulate two-phase flows with high density ratio. The problems of discontinuity of density and momentum flux are known to be challenging in simulations. In order to overcome the numerical instabilities, an extra velocity field is designed to extend velocity of the heavier phase into the lighter phase and to enforce a new boundary condition near the interface, which is similar to nonslip boundary conditions in fluid–structure interaction problems. The interface is captured using a volume of fluid method, and a new boundary layer is built on the lighter phase side by an immersed boundary method. The designed boundary layer helps to reduce the spurious velocity caused by the imbalance of dynamic pressure gradient and density gradient and to prevent tearing of the interface due to the tangential velocity across the interface. The influence of time-step, density ratio, and spatial resolution is studied in detail for two set of cases, steady stratified flow and convection of a high-density droplet, where direct comparison is possible to potential flow analysis (i.e., infinite Reynold s number). An initial study for a droplet splashing on a thin liquid film demonstrates applicability of the new solver to real-life applications. However, detailed comparisons should be performed in the future for finite Reynold s number cases to fully demonstrate the improvements in accuracy and stability of high-density ratio two-phase flow simulations offered by the new method.

References

1.
ANSYS Fluent
,
2013
,
Ansys Fluent Theory Guide
,
ANSYS
, Canonsburg, PA.
2.
ANSYS
,
2013
,
ANSYS® Academic Research
,
ANSYS CFX-Solver Model Guide
, Canonsburg, PA.
3.
Siemens
,
2021
,
STAR-CCM+ CFD Software
, Siemens, accessed Sept. 7, 2021, https://mdx.plm.automation.siemens.com/star-ccm-plus
4.
OpenFOAM
,
2014
,
Open∇FOAM—The Open Source CFD Toolbox—User Guide
,
OpenFOAM Found
.
5.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
6.
Roenby
,
J.
,
Bredmose
,
H.
, and
Jasak
,
H.
,
2016
, “
A Computational Method for Sharp Interface Advection
,”
R. Soc. Open Sci.
,
3
(
11
), p.
160405
.10.1098/rsos.160405
7.
Ling
,
Y.
,
Fuster
,
D.
,
Tryggvason
,
G.
, and
Zaleski
,
S.
,
2019
, “
A Two-Phase Mixing Layer Between Parallel Gas and Liquid Streams: Multiphase Turbulence Statistics and Influence of Interfacial Instability
,”
J. Fluid Mech.
,
859
, pp.
268
307
.10.1017/jfm.2018.825
8.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Pulsation and Retraction on Non-Newtonian Flows in Three-Stream Injector Atomization Systems
,”
Chem. Eng. J.
,
309
, pp.
532
544
.10.1016/j.cej.2016.10.046
9.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
10.
Dianat
,
M.
,
Skarysz
,
M.
, and
Garmory
,
A.
,
2017
, “
A Coupled Level Set and Volume of Fluid Method for Automotive Exterior Water Management Applications
,”
Int. J. Multiphase Flow
,
91
, pp.
19
38
.10.1016/j.ijmultiphaseflow.2017.01.008
11.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
12.
Wang
,
Z.
,
Yang
,
J.
, and
Stern
,
K. B.
,
2009
, “
A Coupled Level Set and Volume-of-Fluid Method for Sharp Interface Simulation of Plunging Breaking Waves
,”
Int. J. Multiphase Flow
,
35
(
3
), pp.
227
246
.10.1016/j.ijmultiphaseflow.2008.11.004
13.
Ferrari
,
A.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2017
, “
A Flexible Coupled Level Set and Volume of Fluid (flexCLV) Method to Simulate Microscale Two-Phase Flow in Non-Uniform and Unstructured Meshes
,”
Int. J. Multiphase Flow
,
91
, pp.
276
295
.10.1016/j.ijmultiphaseflow.2017.01.017
14.
Desjardins
,
O.
, and
Moureau
,
V.
,
2010
, “
Methods for Multiphase Flows With High Density Ratio
,”
Cent. Turbul. Res. Proc. Summer Progr.
, 2010, pp.
313
322
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.386.4732&rep=rep1&type=pdf
15.
Francois
,
M. M.
,
Cummins
,
S. J.
,
Dendy
,
E. D.
,
Kothe
,
D. B.
,
Sicilian
,
J. M.
, and
Williams
,
M. W.
,
2006
, “
A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models Within a Volume Tracking Framework
,”
J. Comput. Phys.
,
213
(
1
), pp.
141
–1
73
.10.1016/j.jcp.2005.08.004
16.
Galusinski
,
C.
, and
Vigneaux
,
P.
,
2008
, “
On Stability Condition for Bifluid Flows With Surface Tension: Application to Microfluidics
,”
J. Comput. Phys.
,
227
(
12
), pp.
6140
6164
.10.1016/j.jcp.2008.02.023
17.
Guo
,
Z.
,
Haynes
,
B. S.
, and
Fletcher
,
D. F.
,
2017
, “
Simulation of Microchannel Flows Using a 3D Height Function Formulation for Surface Tension Modelling
,”
Int. Commun. Heat Mass. Transfer
,
89
, pp.
122
133
.10.1016/j.icheatmasstransfer.2017.09.017
18.
Rudman
,
M.
,
1998
, “
A Volume-Tracking Method for Incompressible Multifluid Flows With Large Density Variations
,”
Int. J. Numer. Methods Fluids
,
28
(
2
), pp.
357
378
.10.1002/(SICI)1097-0363(19980815)28:2<357::AID-FLD750>3.0.CO;2-D
19.
Raessi
,
M.
,
2008
, “
A Level Set Based Method for Calculating Flux Densities in Two-Phase Flows
,”
Cent. Turbul. Res. Annu. Res. Briefs
,
2008
, pp.
467
–4
78
.https://web.stanford.edu/group/ctr/ResBriefs08/35_raessi.pdf
20.
Tanguy
,
S.
,
Ménard
,
T.
, and
Berlemont
,
A.
,
2007
, “
A Level Set Method for Vaporizing Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
837
853
.10.1016/j.jcp.2006.07.003
21.
Gibou
,
F.
,
Chen
,
L.
,
Nguyen
,
D.
, and
Banerjee
,
S.
,
2007
, “
A Level Set Based Sharp Interface Method for the Multiphase Incompressible Navier-Stokes Equations With Phase Change
,”
J. Comput. Phys.
,
222
(
2
), pp.
536
555
.10.1016/j.jcp.2006.07.035
22.
Vukčević
,
V.
,
Jasak
,
H.
, and
Gatin
,
I.
,
2017
, “
Implementation of the Ghost Fluid Method for Free Surface Flows in Polyhedral Finite Volume Framework
,”
Comput. Fluids
,
153
, pp.
1
19
.10.1016/j.compfluid.2017.05.003
23.
Alidoost
,
M.
, and
Pishevar
,
A. R.
,
2018
, “
On Importance of the Surface Charge Transport Equation in Numerical Simulation of Drop Deformation in a Direct Current Field
,”
ASME J. Fluids Eng.
,
140
(
12
), p.
121201
.10.1115/1.4040301
24.
Lee
,
M. S.
,
Aute
,
V.
,
Riaz
,
A.
, and
Radermacher
,
R. A.
,
2012
, “
Review on Direct Two-Phase, Phase Change Flow Simulation Methods and Their Applications
,” International Refrigeration and Air Conditioning Conference, Paper No.
1289
.https://core.ac.uk/download/pdf/12982711.pdf
25.
Yang
,
J.
, and
Stern
,
F.
,
2009
, “
Sharp Interface Immersed-Boundary/Level-Set Method for Wave-Body Interactions
,”
J. Comput. Phys.
,
228
(
17
), pp.
6590
6616
.10.1016/j.jcp.2009.05.047
26.
Albadawi
,
A.
,
Donoghue
,
D. B.
,
Robinson
,
A. J.
,
Murray
,
D. B.
, and
Delauré
,
Y. M. C.
,
2013
, “
Influence of Surface Tension Implementation in Volume of Fluid and Coupled Volume of Fluid With Level Set Methods for Bubble Growth and Detachment
,”
Int. J. Multiphase Flow
,
53
, pp.
11
28
.10.1016/j.ijmultiphaseflow.2013.01.005
27.
Pfeffer
,
W. F.
,
1986
, “
The Divergence Theorem
,”
Trans. Am. Math. Soc.
,
295
(
1986
), pp.
665
685
.https://www.ams.org/journals/tran/1986-295-02/S0002-9947-1986-0833702-0/S0002-9947-1986-0833702-0.pdf
28.
Klaij
,
C. M.
,
Hoekstra
,
M.
, and
Vaz
,
G.
,
2018
, “
Design, Analysis and Verification of a Volume-of-Fluid Model With Interface-Capturing Scheme
,”
Comput. Fluids
,
170
, pp.
324
340
.10.1016/j.compfluid.2018.05.016
29.
Hoang
,
D. A.
,
van Steijn
,
V.
,
Portela
,
L. M.
,
Kreutzer
,
M. T.
, and
Kleijn
,
C. R.
,
2013
, “
Benchmark Numerical Simulations of Segmented Two-Phase Flows in Microchannels Using the Volume of Fluid Method
,”
Comput. Fluids
,
86
, pp. 28–36.10.1016/j.compfluid.2013.01.005
30.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver interFoam
,”
Comput. Sci. Discov.
,
5
(
1
), p.
014016
.10.1088/1749-4699/5/1/014016
31.
Xin
,
J.
,
Shi
,
F.
, and
Lin
,
J. Q.
,
2018
, “
C. A Radial Basis Function Based Ghost Cell Method With Improved Mass Conservation for Complex Moving Boundary Flows
,”
Comput. Fluids
,
176
, pp.
210
225
.10.1016/j.compfluid.2018.09.004
32.
Xin
,
J.
,
Shi
,
F.
, and
Ma
,
J. Q.
,
2020
, “
L. Gradient-Augmented Level Set Two-Phase Flow Method With Pretreated Reinitialization for Three-Dimensional Violent Sloshing
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011402
.10.1115/1.4044823
33.
Sussman
,
M.
,
Smith
,
K. M.
,
Hussaini
,
M. Y.
,
Ohta
,
M.
, and
Zhi-Wei
,
R.
,
2007
, “
A Sharp Interface Method for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
469
505
.10.1016/j.jcp.2006.06.020
34.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J. J.
,
2016
, “
A Robust Interface Method for Drop Formation and Breakup Simulation at High Density Ratio Using an Extrapolated Liquid Velocity
,”
Comput. Fluids
,
136
, pp.
402
420
.10.1016/j.compfluid.2016.06.021
35.
Jin
,
Q.
,
Hudson
,
D.
,
Temarel
,
P.
, and
Price
,
W. G.
,
2019
, “
Performance of a Two-Phase Flow Solver for the Simulation of Breaking Waves
,”
ASME
Paper No. OMAE2019-96326.10.1115/OMAE2019-96326
36.
Bussmann
,
M.
,
Kothe
,
D. B.
, and
Sicilian
,
J. M.
,
2002
, “
Modeling High Density Ratio Incompressible Interfacial Flows
,”
ASME
Paper No. FEDSM2002-31125.10.1115/FEDSM2002-31125
37.
Chenadec
,
L.
, and
Pitsch
,
V.
,
2013
, “
H. A Monotonicity Preserving Conservative Sharp Interface Flow Solver for High Density Ratio Two-Phase Flows
,”
J. Comput. Phys.
,
249
, pp.
185
203
.10.1016/j.jcp.2013.04.027
38.
Wroniszewski
,
P. A.
,
Verschaeve
,
J. C. G.
, and
Pedersen
,
G. K.
,
2014
, “
Benchmarking of Navier-Stokes Codes for Free Surface Simulations by Means of a Solitary Wave
,”
Coast. Eng.
,
91
, pp.
1
17
.10.1016/j.coastaleng.2014.04.012
39.
Roenby
,
J.
,
Larsen
,
B. E.
,
Bredmose
,
H.
, and
Jasak
,
H.
,
2017
, “
A New Volume-of-Fluid Method in openfoam
,”
Seventh International Conference on Computational Methods in Marine Engineering
, Nantes, France, May 15–17, pp.
166
177
.https://backend.orbit.dtu.dk/ws/portalfiles/portal/148469446/Roenbyetal2017.pdf
40.
Josserand
,
C.
,
Ray
,
P.
, and
Zaleski
,
S.
,
2016
, “
Droplet Impact on a Thin Liquid Film: Anatomy of the Splash
,”
J. Fluid Mech.
,
802
, pp.
777
805
.10.1017/jfm.2016.468
41.
Liang
,
G.
,
Guo
,
Y.
,
Shen
,
S.
, and
Yang
,
Y.
,
2014
, “
Crown Behavior and Bubble Entrainment During a Drop Impact on a Liquid Film
,”
Theor. Comput. Fluid Dyn.
,
28
(
2
), pp.
159
–1
70
.10.1007/s00162-013-0308-z
42.
Wang
,
A. B.
, and
Chen
,
C. C.
,
2000
, “
Splashing Impact of a Single Drop Onto Very Thin Liquid Films
,”
Phys. Fluids
, 12(9), pp.
2155
2188
.10.1063/1.1287511
43.
Vander Wal
,
R. L.
,
Berger
,
G. M.
, and
Mozes
,
S. D.
,
2006
, “
Droplets Splashing Upon Films of the Same Fluid of Various Depths
,”
Exp. Fluids
,
40
(
1
), pp.
33
52
.10.1007/s00348-005-0044-2
44.
Guo
,
Y.
,
Wei
,
L.
,
Liang
,
G.
, and
Shen
,
S.
,
2014
, “
Simulation of Droplet Impact on Liquid Film With CLSVOF
,”
Int. Commun. Heat Mass Transfer
,
53
, pp.
26
33
.10.1016/j.icheatmasstransfer.2014.02.006
You do not currently have access to this content.