Abstract

The flow field behind spinning baseballs at two different seam orientations was investigated, and compared with a smooth sphere, to isolate effects of seams on the Magnus effect at Reynolds numbers of 5×104 and 1×105. The rotational speed of the three spheres varied from 0 to 2400 rpm, which are typical of spin rates imparted to a thrown baseball. These spin rates are represented nondimensionally as a relative spin rate relating the surface tangential velocity to the freestream velocity, and varied between 0 and 0.94. Mean velocity profiles, streamline patterns, and power spectral density of the velocity signals were taken using hot-wire anemometry and/or stereoscopic particle image velocimetry in the wake region. The sphere wake orientation changed over a range of relative spin rates, indicating an inverse Magnus effect. Vortex shedding at a Strouhal number of 0.25 was present on the sphere at low relative spin rates. However, the seams on the baseball prevented any consequential change in wake orientation and, at most spin rates, suppressed the shedding frequency exhibited by the sphere. Instead, frequencies corresponding to the seam rotation rates were observed in the wake flow. It was concluded that the so-called inverse Magnus effect recorded by previous investigators at specific combinations of Reynolds number and relative spin rate on a sphere exists for a smooth sphere or an axisymmetrically dimpled sphere but not for a baseball near critical Reynolds numbers, where the wake flow pattern is strongly influenced by the raised seams.

References

1.
Briggs
,
L.
,
1959
, “
Effect of Spin and Speed on the Lateral Deflection (Curve) of a Baseball; and the Magnus Effect for Smooth Spheres
,”
Am. J. Phys.
,
27
(
8
), pp.
589
596
.10.1119/1.1934921
2.
Watts
,
R. G.
, and
Ferrer
,
R.
,
1987
, “
The Lateral Force on a Spinning Sphere: Aerodynamics of a Curveball
,”
Am. J. Phys.
,
55
(
1
), pp.
40
44
.10.1119/1.14969
3.
Alaways
,
L. W.
, and
Hubbard
,
M.
,
2001
, “
Experimental Determination of Baseball Spin and Lift
,”
J. Sports Sci.
,
19
(
5
), pp.
349
358
.10.1080/02640410152006126
4.
Nathan
,
A. M.
,
2008
, “
The Effect of Spin on the Flight of a Baseball
,”
Am. J. Phys.
,
76
(
2
), pp.
119
124
.10.1119/1.2805242
5.
Borg
,
A. M.
, and
Morrissey
,
M. P.
,
2014
, “
Aerodynamics of the Knuckleball Pitch: Experimental Measurements on Slowly Rotating Baseballs
,”
Am. J. Phys.
,
82
(
10
), pp.
921
927
.10.1119/1.4885341
6.
Achenbach
,
E.
,
1972
, “
Experiments on the Flow Past Spheres at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
54
(
3
), pp.
565
575
.10.1017/S0022112072000874
7.
Achenbach
,
E.
,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
(
2
), pp.
209
221
.10.1017/S0022112074000644
8.
Taneda
,
S.
,
1978
, “
Visual Observations of the Flow Past a Sphere at Reynolds Numbers Between 104 and 106
,”
J. Fluid Mech.
,
85
(
1
), pp.
187
192
.10.1017/S0022112078000580
9.
Sakamoto
,
H.
, and
Haniu
,
H.
,
1990
, “
A Study on Vortex Shedding From Spheres in a Uniform Flow
,”
ASME J. Fluids Eng.
,
112
(
4
), pp.
386
392
.10.1115/1.2909415
10.
Jang
,
Y. I.
, and
Lee
,
S. J.
,
2008
, “
PIV Analysis of Near-Wake Behind a Sphere at a Subcritical Reynolds Number
,”
Exp. Fluids
,
44
(
6
), pp.
905
914
.10.1007/s00348-007-0448-2
11.
Kawamura
,
Y.
, and
Mizota
,
T.
,
2013
, “
Wind Tunnel Experiment of Bluff Body Aerodynamic Models Using a New Type of Magnetic Suspension and Balance System
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101401
.10.1115/1.4024793
12.
Muyshondt
,
R.
,
Nguyen
,
T.
,
Hassan
,
Y. A.
, and
Anand
,
N. K.
,
2021
, “
Experimental Measurements of the Wake of a Sphere at Subcritical Reynolds Numbers
,”
ASME. J. Fluids Eng.
,
143
(
6
), p.
061301
.10.1115/1.4049936
13.
Wu
,
J. S.
, and
Faeth
,
G. M.
,
1995
, “
Effect of Ambient Turbulence Intensity on Sphere Wakes at Intermediate Reynolds Numbers
,”
AIAA J.
,
33
(
1
), pp.
171
173
.10.2514/3.12353
14.
Eshbal
,
L.
,
Rinsky
,
V.
,
David
,
T.
,
Greenblatt
,
D.
, and
van Hout
,
R.
,
2019
, “
Measurement of Vortex Shedding in the Wake of a Sphere at Re = 465
,”
J. Fluid Mech.
,
870
, pp.
290
315
.10.1017/jfm.2019.250
15.
David
,
T.
,
Eshbal
,
L.
,
Rinsky
,
V.
, and
van Hout
,
R.
,
2020
, “
Flow Measurements in the Near Wake of a Smooth Sphere and One Mimicking a Pine Cone
,”
Phys. Rev. Fluids.
,
5
(
7
), p. 074301.10.1103/PhysRevFluids.5.074301
16.
van Hout
,
R.
,
Eisma
,
J.
,
Elsinga
,
G. E.
, and
Westerweel
,
J.
,
2018
, “
Experimental Study of the Flow in the Wake of a Stationary Sphere Immersed in a Turbulent Boundary Layer
,”
Phys. Rev. Fluids.
,
3
(
2
), p.
024601
.10.1103/PhysRevFluids.3.024601
17.
Jacobson
,
N.
, and
van Hout
,
R.
,
2016
, “
Measurements of the Flow in the Near Wake of a“Rough”, Semi Permeable Prolate Spheroid at Intermediate Reynolds Numbers
,”
Eur. J. Mech./B Fluids.
,
57
, pp.
159
175
.10.1016/j.euromechflu.2015.12.009
18.
Tanaka
,
H.
, and
Nagano
,
S.
,
1973
, “
Study of Flow Around a Rotating Circular Cylinder
,”
Bull. JSME
,
16
(
92
), pp.
234
243
.10.1299/jsme1958.16.234
19.
Diaz
,
F.
,
Gavalda
,
J.
,
Kawall
,
J. G.
,
Keffer
,
J. F.
, and
Giralt
,
F.
,
1985
, “
Asymmetrical Wake Generated by a Spinning Cylinder
,”
AIAA J.
,
23
(
1
), pp.
49
54
.10.2514/3.8870
20.
Kumar
,
S.
,
Cantu
,
C.
, and
Gonzalez
,
B.
,
2011
, “
Flow Past a Rotating Cylinder at Low and High Rotation Rates
,”
ASME J. Fluids Eng.
,
133
(
4
), p.
041201
.10.1115/1.4003984
21.
Dol
,
S. S.
,
Kopp
,
G. A.
, and
Martinuzzi
,
R. J.
,
2008
, “
The Suppression of Periodic Vortex Shedding From a Rotating Circular Cylinder
,”
J. Wind Eng.
,
96
(
6–7
), pp.
1164
1184
.
22.
Maruyama
,
Y.
,
2011
, “
Study on the Physical Mechanism of the Magnus Effect
,”
Trans. Jpn. Soc. Aero. Space Sci.
,
54
(
185/186
), pp.
173
181
.10.2322/tjsass.54.173
23.
Kim
,
J.
,
Park
,
H.
,
Choi
,
H.
, and
Yoo
,
J. Y.
,
2013
, “
Inverse Magnus Effect on a Rotating Sphere
,”
International Symposium on Turbulence and Shear Flow Phenomena
, Aug. 28–30, Poitiers, France, pp.
1
5
.
24.
Kim
,
J.
,
Choi
,
H.
,
Park
,
H.
, and
Yoo
,
J. Y.
,
2014
, “
Inverse Magnus Effect on a Rotating Sphere: When and Why
,”
J. Fluid Mech.
,
754
(
2
), pp.
1
11
.
25.
Muto
,
M.
,
Tsubokura
,
M.
, and
Oshima
,
N.
,
2012
, “
Negative Magnus Lift on a Rotating Sphere at Around the Critical Reynolds Number
,”
Phys. Fluids
,
24
(
1
), p.
014102
.10.1063/1.3673571
26.
Kray
,
T.
,
Franke
,
J.
, and
Frank
,
W.
,
2012
, “
Magnus Effect on a Rotating Sphere at High Reynolds Numbers
,”
J. Wind Eng. Ind. Aerodyn.
,
110
, pp.
1
9
.10.1016/j.jweia.2012.07.005
27.
Cross
,
R.
, and
Lindsey
,
C.
,
2014
, “
Measurements of Drag and Lift on Tennis Balls in Flight
,”
Sports Eng.
,
17
(
2
), pp.
89
96
.10.1007/s12283-013-0144-9
28.
Stepanek
,
A.
,
1988
, “
The Aerodynamics of Tennis Balls—the Topspin Lob
,”
Am. J. Phys.
,
56
(
2
), pp.
138
142
.10.1119/1.15692
29.
Sayers
,
A.
,
2003
, “
Aerodynamics of a Tennis Ball—Stationary and Spinning
,”
Tennis Science and Technology
, Vol.
2
,
International Tennis Federation
, London, UK, pp.
123
132
.
30.
Alam
,
F.
,
Watkins
,
S.
, and
Subic
,
A.
,
2004
, “
Effects of Spin on Aerodynamic Properties of Tennis Balls
,”
Proceedings of the ISEA 5th International Conference on Sports Engineering
, Davis, CA, Sept. 13–16, 2004, pp.
83
89
.
31.
Goodwill
,
S.
,
Chin
,
S.
, and
Haake
,
S.
,
2004
, “
Aerodynamics of Spinning and Non-Spinning Tennis Balls
,”
J. Wind Eng. Ind. Aerodyn.
,
92
(
11
), pp.
935
958
.10.1016/j.jweia.2004.05.004
32.
Lyu
,
B.
,
Kensrud
,
J.
, and
Smith
,
L.
,
2020
, “
The Reverse Magnus Effect in Golf Balls
,”
Sports Eng.
,
23
(
1
), p.
3
.10.1007/s12283-020-0318-1
33.
Sakib
,
N.
, and
Smith
,
B. L.
,
2020
, “
Study of the Reverse Magnus Effect on a Golf Ball and a Smooth Ball Moving Through Air
,”
Exp. Flu.
,
61
, p.
115
.10.1007/s00348-020-02946-2
34.
Cross
,
R.
,
2012
, “
Aerodynamics in the Classroom and at the Ball Park
,”
Am. J. Phys.
,
80
(
4
), pp.
289
297
.10.1119/1.3680609
35.
Nagami
,
T.
,
Higuchi
,
T.
,
Nakata
,
H.
,
Yanai
,
T.
, and
Kazuyuki
,
K.
,
2016
, “
Relation Between Lift Force and Ball Spin for Different Baseball Pitches
,”
J. Appl. Biomech.
,
32
(
2
), pp.
196
204
.10.1123/jab.2015-0068
36.
Aoki
,
K.
,
Kinoshita
,
Y.
,
Nagase
,
J.
, and
Nakayama
,
Y.
,
2003
, “
Dependence of Aerodynamic Characteristics and Flow Pattern on Surface Structure of a Baseball
,”
J. Visualization
,
6
(
2
), pp.
185
193
.10.1007/BF03181623
37.
Mehta
,
R. D.
, and
Pallis
,
J. M.
,
2001
, “
Sports Ball Aerodynamics: Effects of Velocity, Spin and Surface Roughness
,”
Mater. Sci. Sport
, pp.
185
197
.
38.
Shah
,
K.
,
Shakya
,
R.
, and
Mittal
,
S.
,
2019
, “
Aerodynamic Forces on Projectiles Used in Various Sports
,”
Phys. Fluids
,
31
(
1
), p.
015106
.10.1063/1.5064700
You do not currently have access to this content.