Abstract

Direct numerical simulation (DNS) is often used to uncover and highlight physical phenomena that are not properly resolved using other computational fluid dynamics methods due to shortcuts taken in the latter to cheapen computational cost. In this work, we use DNS along with interface tracking to take an in-depth look at bubble formation, departure, and ascent through water. To form the bubbles, air is injected through a novel orifice geometry not unlike that of a flute submerged underwater, which introduces phenomena that are not typically brought to light in conventional orifice studies. For example, our single-phase simulations show a significant leaning effect, wherein pressure accumulating at the trailing nozzle edges leads to asymmetric discharge through the nozzle hole and an upward bias in the flow in the rest of the pipe. In our two-phase simulations, this effect is masked by the surface tension of the bubble sitting on the nozzle, but it can still be seen following departure events. After bubble departure, we observe the bubbles converge toward an ellipsoidal shape, which has been validated by experiments. As the bubbles rise, we note that local variations in the vertical velocity cause the bubble edges to flap slightly, oscillating between relatively low and high velocities at the edges.

References

1.
Zhang
,
L.
, and
Shoji
,
M.
,
2001
, “
Aperiodic Bubble Formation From a Submerged Orifice
,”
Chem. Eng. Sci.
,
56
(
18
), pp.
5371
5381
.10.1016/S0009-2509(01)00241-X
2.
Qu
,
C.
,
Yu
,
Y.
, and
Zhang
,
J.
,
2017
, “
Experimental Study of Bubbling Regimes on Submerged Micro-Orifices
,”
Int. J. Heat Mass Transfer
,
111
, pp.
17
28
.10.1016/j.ijheatmasstransfer.2017.03.088
3.
Bai
,
H.
, and
Thomas
,
B. G.
,
2001
, “
Bubble Formation During Horizontal Gas Injection Into Downward-Flowing Liquid
,”
Metall. Mater. Trans. B
,
32
(
6
), pp.
1143
1159
.10.1007/s11663-001-0102-y
4.
Corchero
,
G.
,
Montañés
,
J. L.
, and
Corchero Téllez
,
J.
,
2012
, “
Effect of Flow Rate Conditions on Bubble Formation
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5044
5052
.10.1016/j.ijheatmasstransfer.2012.05.002
5.
Lewis
,
D. A.
, and
Davidson
,
J. F.
,
1983
, “
Bubble Sizes Produced by Shear and Turbulence in a Bubble Column
,”
Chem. Eng. Sci.
,
38
(
1
), pp.
161
167
.10.1016/0009-2509(83)80147-X
6.
Balzan
,
M. A.
,
Hernandez
,
F.
,
Lange
,
C. F.
, and
Fleck
,
B. A.
,
2019
, “
Parametric Study of the Frequency of Bubble Formation at a Single Orifice With Liquid Cross-Flow
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091102
.10.1115/1.4042755
7.
Wen
,
J.
,
Sun
,
Q.
,
Sun
,
Z.
, and
Gu
,
H.
,
2019
, “
Bubble Coalescence Efficiency Near Multi-Orifice Plate
,”
Chin. J. Chem. Eng.
,
27
(
8
), pp.
1765
1776
.10.1016/j.cjche.2018.11.006
8.
Xie
,
J.
,
Zhu
,
X.
,
Liao
,
Q.
,
Wang
,
H.
, and
Ding
,
Y. D.
,
2012
, “
Dynamics of Bubble Formation and Detachment From an Immersed Micro-Orifice on a Plate
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3205
3213
.10.1016/j.ijheatmasstransfer.2012.02.053
9.
Valencia
,
A.
,
Cordova
,
M.
, and
Ortega
,
J.
,
2002
, “
Numerical Simulation of Gas Bubbles Formation at a Submerged Orifice in a Liquid
,”
Int. Commun. Heat Mass Transfer
,
29
(
6
), pp.
821
830
.10.1016/S0735-1933(02)00372-X
10.
Guillen
,
D. P.
,
Cambareri
,
J.
,
Abboud
,
A. W.
, and
Bolotnov
,
I. A.
,
2018
, “
Numerical Comparison of Bubbling in a Waste Glass Melter
,”
Ann. Nucl. Energy
,
113
, pp.
380
392
.10.1016/j.anucene.2017.11.044
11.
Gerlach
,
D.
,
Alleborn
,
N.
,
Buwa
,
V.
, and
Durst
,
F.
,
2007
, “
Numerical Simulation of Periodic Bubble Formation at a Submerged Orifice With Constant Gas Flow Rate
,”
Chem. Eng. Sci.
,
62
(
7
), pp.
2109
2125
.10.1016/j.ces.2006.12.061
12.
Simmons
,
J. A.
,
Sprittles
,
J. E.
, and
Shikhmurzaev
,
Y. D.
,
2015
, “
The Formation of a Bubble From a Submerged Orifice
,”
Eur. J. Mech. B/Fluids
,
53
, pp.
24
36
.10.1016/j.euromechflu.2015.01.003
13.
Fang
,
J.
,
Cambareri
,
J. J.
,
Li
,
M.
,
Saini
,
N.
, and
Bolotnov
,
I. A.
,
2020
, “
Interface-Resolved Simulations of Reactor Flows
,”
Nucl. Technol.
,
206
(
2
), pp.
133
149
.10.1080/00295450.2019.1620056
14.
Puač
,
N.
,
Gherardi
,
M.
, and
Shiratani
,
M.
,
2018
, “
Plasma Agriculture: A Rapidly Emerging Field
,”
Plasma Processes Polym.
,
15
(
2
), p.
1700174
.10.1002/ppap.201700174
15.
Nzeribe
,
B. N.
,
Crimi
,
M.
,
Mededovic Thagard
,
S.
, and
Holsen
,
T. M.
,
2019
, “
Physico-Chemical Processes for the Treatment of Per- and Polyfluoroalkyl Substances (PFAS): A Review
,”
Crit. Rev. Environ. Sci. Technol.
,
49
(
10
), pp.
866
915
.10.1080/10643389.2018.1542916
16.
Banaschik
,
R.
,
Lukes
,
P.
,
Jablonowski
,
H.
,
Hammer
,
M. U.
,
Weltmann
,
K. D.
, and
Kolb
,
J. F.
,
2015
, “
Potential of Pulsed Corona Discharges Generated in Water for the Degradation of Persistent Pharmaceutical Residues
,”
Water Res.
,
84
, pp.
127
135
.10.1016/j.watres.2015.07.018
17.
Kolb
,
J. F.
,
Joshi
,
R. P.
,
Xiao
,
S.
, and
Schoenbach
,
K. H.
,
2008
, “
Streamers in Water and Other Dielectric Liquids
,”
J. Phys. D: Appl. Phys.
,
41
(
23
), p.
234007
.10.1088/0022-3727/41/23/234007
18.
Bruggeman
,
P.
, and
Leys
,
C.
,
2009
, “
Non-Thermal Plasmas in and in Contact With Liquids
,”
J. Phys. D. Appl. Phys.
,
42
(
5
), p.
053001
.10.1088/0022-3727/42/5/053001
19.
Stratton
,
G. R.
,
Bellona
,
C. L.
,
Dai
,
F.
,
Holsen
,
T. M.
, and
Thagard
,
S. M.
,
2015
, “
Plasma-Based Water Treatment: Conception and Application of a New General Principle for Reactor Design
,”
Chem. Eng. J.
,
273
, pp.
543
550
.10.1016/j.cej.2015.03.059
20.
Babaeva
,
N. Y.
,
Tereshonok
,
D. V.
, and
Naidis
,
G. V.
,
2015
, “
Initiation of Breakdown in Bubbles Immersed in Liquids: Pre-Existed Charges Versus Bubble Size
,”
J. Phys. D: Appl. Phys.
,
48
(
35
), p.
355201
.10.1088/0022-3727/48/35/355201
21.
Babaeva
,
N. Y.
,
Naidis
,
G. V.
,
Tereshonok
,
D. V.
, and
Smirnov
,
B. M.
,
2017
, “
Streamer Breakdown in Elongated, Compressed and Tilted Bubbles Immersed in Water
,”
J. Phys. D: Appl. Phys.
,
50
(
36
), p.
364001
.10.1088/1361-6463/aa7ef1
22.
Norberg
,
S. A.
,
Johnsen
,
E.
, and
Kushner
,
M. J.
,
2015
, “
Formation of Reactive Oxygen and Nitrogen Species by Repetitive Negatively Pulsed Helium Atmospheric Pressure Plasma Jets Propagating Into Humid Air
,”
Plasma Sources Sci. Technol.
,
24
(
3
), p.
035026
.10.1088/0963-0252/24/3/035026
23.
Bruggeman
,
P. J.
,
Kushner
,
M. J.
,
Locke
,
B. R.
,
Gardeniers
,
J. G. E.
,
Graham
,
W. G.
,
Graves
,
D. B.
,
Hofman-Caris
,
R. C. H. M.
,
Maric
,
D.
,
Reid
,
J. P.
,
Ceriani
,
E.
,
Rivas
,
D. F.
,
Foster
,
J. E.
,
Garrick
,
S. C.
,
Gorbanev
,
Y.
,
Hamaguchi
,
S.
,
Iza
,
F.
,
Jablonowski
,
H.
,
Klimova
,
E.
,
Kolb
,
J.
,
Krcma
,
F.
,
Lukes
,
P.
,
Machala
,
Z.
,
Marinov
,
I.
,
Mariotti
,
D.
,
Thagard
,
S. M.
,
Minakata
,
D.
,
Neyts
,
E. C.
,
Pawlat
,
J.
,
Petrovic
,
Z. L.
,
Pflieger
,
R.
,
Reuter
,
S.
,
Schram
,
D. C.
,
Schröter
,
S.
,
Shiraiwa
,
M.
,
Tarabová
,
B.
,
Tsai
,
P. A.
,
Verlet
,
J. R. R.
,
von Woedtke
,
T.
,
Wilson
,
K. R.
,
Yasui
,
K.
, and
Zvereva
,
G.
,
2016
, “
Plasma–Liquid Interactions: A Review and Roadmap
,”
Plasma Sources Sci. Technol.
,
25
(
5
), p.
053002
.10.1088/0963-0252/25/5/053002
24.
Babaeva
,
N. Y.
, and
Kushner
,
M. J.
,
2008
, “
Streamer Branching: The Role of Inhomogeneities and Bubbles
,”
IEEE Trans. Plasma Sci.
,
36
(
4
), pp.
892
893
.10.1109/TPS.2008.922434
25.
Babaeva
,
N. Y.
, and
Kushner
,
M. J.
,
2009
, “
Structure of Positive Streamers Inside Gaseous Bubbles Immersed in Liquids
,”
J. Phys. D: Appl. Phys.
,
42
(
13
), p.
132003
.10.1088/0022-3727/42/13/132003
26.
Babaeva
,
N. Y.
,
Tereshonok
,
D. V.
,
Naidis
,
G. V.
, and
Smirnov
,
B. M.
,
2016
, “
Initiation of Breakdown in Strings of Bubbles Immersed in Transformer Oil and Water: String Orientation and Proximity of Bubbles
,”
J. Phys. D: Appl. Phys.
,
49
(
2
), p.
025202
.10.1088/0022-3727/49/2/025202
27.
Mededovic Thagard
,
S.
,
Stratton
,
G. R.
,
Dai
,
F.
,
Bellona
,
C. L.
,
Holsen
,
T. M.
,
Bohl
,
D. G.
,
Paek
,
E.
, and
Dickenson
,
E. R. V.
,
2017
, “
Plasma-Based Water Treatment: Development of a General Mechanistic Model to Estimate the Treatability of Different Types of Contaminants
,”
J. Phys. D: Appl. Phys.
,
50
(
1
), p.
014003
.10.1088/1361-6463/50/1/014003
28.
Banaschik
,
R.
,
Jablonowski
,
H.
,
Bednarski
,
P. J.
, and
Kolb
,
J. F.
,
2018
, “
Degradation and Intermediates of Diclofenac as Instructive Example for Decomposition of Recalcitrant Pharmaceuticals by Hydroxyl Radicals Generated With Pulsed Corona Plasma in Water
,”
J. Hazard. Mater.
,
342
, pp.
651
660
.10.1016/j.jhazmat.2017.08.058
29.
Banaschik
,
R.
,
Burchhardt
,
G.
,
Zocher
,
K.
,
Hammerschmidt
,
S.
,
Kolb
,
J. F.
, and
Weltmann
,
K. D.
,
2016
, “
Comparison of Pulsed Corona Plasma and Pulsed Electric Fields for the Decontamination of Water Containing Legionella Pneumophila as Model Organism
,”
Bioelectrochemistry
,
112
, pp.
83
90
.10.1016/j.bioelechem.2016.05.006
30.
Ranieri
,
P.
,
Sponsel
,
N.
,
Kizer
,
J.
,
Rojas‐Pierce
,
M.
,
Hernández
,
R.
,
Gatiboni
,
L.
,
Grunden
,
A.
, and
Stapelmann
,
K.
,
2020
, “
Plasma Agriculture: Review From the Perspective of the Plant and Its Ecosystem
,”
Plasma Processes Polym.
,
18
(
1
), p.
2000162
.10.1002/ppap.202000162
31.
Ingels
,
R.
, and
Graves
,
D. B.
,
2015
, “
Improving the Efficiency of Organic Fertilizer and Nitrogen Use Via Air Plasma and Distributed Renewable Energy
,”
Plasma Med.
,
5
(
2–4
), pp.
257
270
.10.1615/PlasmaMed.2016015763
32.
Park
,
D. P.
,
Davis
,
K.
,
Gilani
,
S.
,
Alonzo
,
C. A.
,
Dobrynin
,
D.
,
Friedman
,
G.
,
Fridman
,
A.
,
Rabinovich
,
A.
, and
Fridman
,
G.
,
2013
, “
Reactive Nitrogen Species Produced in Water by Non-Equilibrium Plasma Increase Plant Growth Rate and Nutritional Yield
,”
Curr. Appl. Phys.
,
13
(
Suppl. 1
), pp.
S19
S29
.10.1016/j.cap.2012.12.019
33.
Gierczik
,
K.
,
Vukušić
,
T.
,
Kovács
,
L.
,
Székely
,
A.
,
Szalai
,
G.
,
Milošević
,
S.
,
Kocsy
,
G.
,
Kutasi
,
K.
, and
Galiba
,
G.
,
2020
, “
Plasma‐Activated Water to Improve the Stress Tolerance of Barley
,”
Plasma Process. Polym.
,
17
(
3
), p.
1900123
.10.1002/ppap.201900123
34.
Bradu
,
C.
,
Kutasi
,
K.
,
Magureanu
,
M.
,
Puač
,
N.
, and
Živković
,
S.
,
2020
, “
Reactive Nitrogen Species in Plasma-Activated Water: Generation, Chemistry and Application in Agriculture
,”
J. Phys. D: Appl. Phys.
,
53
(
22
), p.
223001
.10.1088/1361-6463/ab795a
35.
Chauvin
,
J.
,
Judée
,
F.
,
Yousfi
,
M.
,
Vicendo
,
P.
, and
Merbahi
,
N.
,
2017
, “
Analysis of Reactive Oxygen and Nitrogen Species Generated in Three Liquid Media by Low Temperature Helium Plasma Jet
,”
Sci. Rep.
,
7
(
1
), p.
4562
.10.1038/s41598-017-04650-4
36.
Šimečková
,
J.
,
Krčma
,
F.
,
Klofáč
,
D.
,
Dostál
,
L.
, and
Kozáková
,
Z.
,
2020
, “
Influence of Plasma-Activated Water on Physical and Physical-Chemical Soil Properties
,”
Water (Switzerland)
,
12
(
9
), p.
2357
.10.3390/w12092357
37.
Kurake
,
N.
,
Ishikawa
,
K.
,
Tanaka
,
H.
,
Hashizume
,
H.
,
Nakamura
,
K.
,
Kajiyama
,
H.
,
Toyokuni
,
S.
,
Kikkawa
,
F.
,
Mizuno
,
M.
, and
Hori
,
M.
,
2019
, “
Non-Thermal Plasma-Activated Medium Modified Metabolomic Profiles in the Glycolysis of U251SP Glioblastoma
,”
Arch. Biochem. Biophys.
,
662
, pp.
83
92
.10.1016/j.abb.2018.12.001
38.
Yan
,
D.
,
Talbot
,
A.
,
Nourmohammadi
,
N.
,
Cheng
,
X.
,
Canady
,
J.
,
Sherman
,
J.
, and
Keidar
,
M.
,
2015
, “
Principles of Using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment
,”
Sci. Rep.
,
5
, p.
18339
.10.1038/srep18339
39.
Privat-Maldonado
,
A.
, and
Bogaerts
,
A.
,
2020
, “
Plasma in Cancer Treatment
,”
Cancers (Basel
),
12
(
9
), p.
2617
.10.3390/cancers12092617
40.
Von Woedtke
,
T.
,
Emmert
,
S.
,
Metelmann
,
H. R.
,
Rupf
,
S.
, and
Weltmann
,
K. D.
,
2020
, “
Perspectives on Cold Atmospheric Plasma (CAP) Applications in Medicine
,”
Phys. Plasmas
,
27
(
7
), p.
070601
.10.1063/5.0008093
41.
Freund
,
E.
,
Liedtke
,
K. R.
,
van der Linde
,
J.
,
Metelmann
,
H.-R.
,
Heidecke
,
C.-D.
,
Partecke
,
L.-I.
, and
Bekeschus
,
S.
,
2019
, “
Physical Plasma-Treated Saline Promotes an Immunogenic Phenotype in CT26 Colon Cancer Cells In Vitro and In Vivo
,”
Sci. Rep.
,
9
(
1
), p.
634
.10.1038/s41598-018-37169-3
42.
Tachibana
,
K.
,
Takekata
,
Y.
,
Mizumoto
,
Y.
,
Motomura
,
H.
, and
Jinno
,
M.
,
2011
, “
Analysis of a Pulsed Discharge Within Single Bubbles in Water Under Synchronized Conditions
,”
Plasma Sources Sci. Technol.
,
20
(
3
), p.
034005
.10.1088/0963-0252/20/3/034005
43.
Vanraes
,
P.
,
Nikiforov
,
A.
, and
Leys
,
C.
,
2012
, “
Electrical and Spectroscopic Characterization of Underwater Plasma Discharge Inside Rising Gas Bubbles
,”
J. Phys. D: Appl. Phys.
,
45
(
24
), p.
245206
.10.1088/0022-3727/45/24/245206
44.
Kurahashi
,
M.
,
Katsura
,
S.
, and
Mizuno
,
A.
,
1997
, “
Radical Formation Due to Discharge Inside Bubble in Liquid
,”
J. Electrostat.
,
42
(
1–2
), pp.
93
105
.10.1016/S0304-3886(97)00146-0
45.
Jansen
,
K. E.
,
1999
, “
A Stabilized Finite Element Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
174
(
3–4
), pp.
299
317
.10.1016/S0045-7825(98)00301-6
46.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Method for the Incompressible Navier-Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.10.1002/1097-0363(20010115)35:1<93::AID-FLD85>3.0.CO;2-G
47.
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2019
, “
Slug-to-Churn Vertical Two-Phase Flow Regime Transition Study Using an Interface Tracking Approach
,”
Int. J. Multiphase Flow
,
115
, pp.
196
206
.10.1016/j.ijmultiphaseflow.2019.04.003
48.
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2020
, “
Exploring Two-Phase Flow Regime Transition Mechanisms Using High-Resolution Virtual Experiments
,”
Nucl. Sci. Eng.
,
194
(
8–9
), pp.
708
720
.10.1080/00295639.2020.1722543
49.
Fang
,
J.
,
Rasquin
,
M.
, and
Bolotnov
,
I. A.
,
2017
, “
Interface Tracking Simulations of Bubbly Flows in PWR Relevant Geometries
,”
Nucl. Eng. Des.
,
312
, pp.
205
213
.10.1016/j.nucengdes.2016.07.002
50.
Fang
,
J.
,
Cambareri
,
J. J.
,
Rasquin
,
M.
,
Gouws
,
A.
,
Balakrishnan
,
R.
,
Jansen
,
K. E.
, and
Bolotnov
,
I. A.
,
2019
, “
Interface Tracking Investigation of Geometric Effects on the Bubbly Flow in PWR Subchannels
,”
Nucl. Sci. Eng.
,
193
(
1–2
), pp.
46
62
.10.1080/00295639.2018.1499280
51.
Bolotnov
,
I. A.
,
2013
, “
Influence of Bubbles on the Turbulence Anisotropy
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051301
.10.1115/1.4023651
52.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
53.
Nagrath
,
S.
,
Jansen
,
K. E.
, and
Lahey
,
R. T.
,
2005
, “
Computation of Incompressible Bubble Dynamics With a Stabilized Finite Element Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
42–44
), pp.
4565
4587
.10.1016/j.cma.2004.11.012
54.
Perry
,
R. H.
,
1984
,
Perry's Chemical Engineers' Handbook
,
McGraw-Hill
,
New York
.
55.
Sussman
,
M.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Colella
,
P.
,
Howell
,
L. H.
, and
Welcome
,
M. L.
,
1999
, “
An Adaptive Level Set Approach for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
148
(
1
), pp.
81
124
.10.1006/jcph.1998.6106
56.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge, UK/New York
.
57.
Sussman
,
M.
, and
Fatemi
,
E.
,
1999
, “
Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput.
,
20
(
4
), pp.
1165
1191
.10.1137/S1064827596298245
58.
Ménard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
,
2007
, “
Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
510
524
.10.1016/j.ijmultiphaseflow.2006.11.001
59.
Gaddis
,
E. S.
, and
Vogelpohl
,
A.
,
1986
, “
Bubble Formation in Quiescent Liquids Under Constant Flow Conditions
,”
Chem. Eng. Sci.
,
41
(
1
), pp.
97
105
.10.1016/0009-2509(86)85202-2
60.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.