Abstract

The equivalent Markov motion model (EMMM) is used to improve the probability model for solid particle erosion and droplet deposition. When calculating the solid particle erosion, the probability density distribution of particle velocity developed by EMMM is used to improve the solution of the impact parameters of solid particles. When calculating the droplet deposition rate of annular flow, the conversion coefficient proposed by EMMM is used to correct the variance of the particle displacement. The proportion of the particles deposited is calculated by solving the probability of a single particle reaching the pipe wall or liquid film. The improved model involving the EMMM is well verified by comparison with experimental data. Compared with the previous probability model, the present model can provide more accurate predictions. In addition, the self-compatibility of the EMMM is discussed in detail.

References

1.
Zhang
,
R.
,
Xu
,
K.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2021
, “
Deposition Process and Equivalent Markov Motion of High-Inertia Particles in a Long Straight Pipeline
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111403
.10.1115/1.4051387
2.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2018
, “
A CFD-Based Method for Slurry Erosion Prediction
,”
Wear
,
398–399
, pp.
127
145
.10.1016/j.wear.2017.11.025
3.
Zhang
,
J.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2018
, “
Modeling Sand Fines Erosion in Elbows Mounted in Series
,”
Wear
,
402–403
, pp.
196
206
.10.1016/j.wear.2018.02.009
4.
Farokhipour
,
A.
,
Mansoori
,
Z.
,
Rasteh
,
A.
,
Rasoulian
,
M. A.
,
Saffar-Avval
,
M.
, and
Ahmadi
,
G.
,
2019
, “
Study of Erosion Prediction of Turbulent Gas-Solid Flow in Plugged Tees Via CFD-DEM
,”
Powder Technol.
,
352
, pp.
136
150
.10.1016/j.powtec.2019.04.058
5.
Lain
,
S.
, and
Sommerfeld
,
M.
,
2019
, “
Numerical Prediction of Particle Erosion of Pipe Bends
,”
Adv. Powder Technol.
,
30
(
2
), pp.
366
383
.10.1016/j.apt.2018.11.014
6.
Wee
,
S. K.
, and
Yap
,
Y. J.
,
2019
, “
CFD Study of Sand Erosion in Pipeline
,”
J. Pet. Sci. Eng.
,
176
, pp.
269
278
.10.1016/j.petrol.2019.01.001
7.
Yu
,
W.
,
Fede
,
P.
,
Climent
,
E.
, and
Sanders
,
S.
,
2019
, “
Multi-Fluid Approach for the Numerical Prediction of Wall Erosion in an Elbow
,”
Powder Technol.
,
354
, pp.
561
583
.10.1016/j.powtec.2019.06.007
8.
Pouraria
,
H.
,
Darihaki
,
F.
,
Park
,
K. H.
,
Shirazi
,
S. A.
, and
Seo
,
Y.
,
2020
, “
CFD Modelling of the Influence of Particle Loading on Erosion Using Dense Discrete Particle Model
,”
Wear
,
460–461
, p.
203450
.10.1016/j.wear.2020.203450
9.
McLaury
,
B. S.
,
Wang
,
J.
,
Shirazi
,
S. A.
,
Shadley
,
J. R.
, and
Rybichi
,
E. F.
,
1997
, “
Solid Particle Erosion in Long Radius Elbows and Straight Pipes
,”
SPE Annual Technical Conference and Exhibition
, Tulsa, OK, Oct. 5–8, pp.
977
986
.10.2118/38842-MS
10.
DNV
,
2011
, “
Recommended Practice RP O501 Erosive Wear in Piping Systems
,” Det Norske Veritas, Bærum, Akershus, Norway, Revision 4.
2
2007
.
11.
Uzi
,
A.
,
Ami
,
Y. B.
, and
Levy
,
A.
,
2017
, “
Erosion Prediction of Industrial Conveying Pipelines
,”
Powder Technol.
,
309
, pp.
49
60
.10.1016/j.powtec.2016.12.087
12.
Coker
,
E. H.
, and
Van Peursem
,
D.
,
2018
, “
The Erosion of Horizontal Sand Slurry Pipelines Resulting From Inter-Particle Collision
,”
Wear
,
400–401
, pp.
74
81
.10.1016/j.wear.2017.12.022
13.
Schadel
,
S. A.
,
Leman
,
G. W.
,
Binder
,
J. L.
, and
Hanratty
,
T. J.
,
1990
, “
Rates of Atomization and Deposition in Vertical Annular Flow
,”
Int. J. Multiphase Flow
,
16
(
3
), pp.
363
374
.10.1016/0301-9322(90)90069-U
14.
Sugawara
,
S.
,
1990
, “
Droplet Deposition and Entrainment Modeling Based on the Three-Fluid Model
,”
Nucl. Eng. Des.
,
122
(
1–3
), pp.
67
84
.10.1016/0029-5493(90)90197-6
15.
Okawa
,
T.
,
Kotani
,
A.
,
Kataoka
,
I.
, and
Naito
,
M.
,
2003
, “
Prediction of Critical Heat Flux in Annular Flow Using a Film Flow Model
,”
J. Nucl. Sci. Technol.
,
40
(
6
), pp.
388
396
.10.1080/18811248.2003.9715370
16.
Bae
,
B.
,
Kim
,
T.
,
Jeong
,
J.
,
Kim
,
K.
, and
Yun
,
B.
,
2018
, “
Droplet Entrainment and Deposition Rates in a Horizontal Annular Flow for SPACE Code
,”
Prog. Nucl. Energy
,
109
, pp.
45
52
.10.1016/j.pnucene.2018.07.008
17.
Anglart
,
H.
, and
Caraghiaur
,
D.
,
2011
, “
CFD Modeling of Boiling Annular-Mist Flow for Dryout Investigations
,”
Multiphase Sci. Technol.
,
23
(
2–4
), pp.
223
251
.10.1615/MultScienTechn.v23.i2-4.50
18.
Caraghiaur
,
D.
, and
Anglart
,
H.
,
2013
, “
Drop Deposition in Annular Two-Phase Flow Calculated With Lagrangian Particle Tracking
,”
Nucl. Eng. Des.
,
265
, pp.
856
866
.10.1016/j.nucengdes.2013.06.026
19.
Ishii
,
M.
, and
Mishima
,
K.
,
1989
, “
Droplet Entrainment Correlation in Annular Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
32
(
10
), pp.
1835
1846
.10.1016/0017-9310(89)90155-5
20.
Utsuno
,
H.
, and
Kaminaga
,
F.
,
1998
, “
Prediction of Liquid Film Dryout in Two-Phase Annular-Mist Flow in a Uniformly Heated Narrow Tube Development of Analytical Method Under BWR Conditions
,”
J. Nucl. Sci. Technol.
,
35
(
9
), pp.
643
653
.10.1080/18811248.1998.9733920
21.
Kataoka
,
I.
,
Ishii
,
M.
, and
Nakayama
,
A.
,
2000
, “
Entrainment and Deposition Rates of Droplets in Annular Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
43
(
9
), pp.
1573
1589
.10.1016/S0017-9310(99)00236-7
22.
Liu
,
Y.
,
Li
,
W. Z.
, and
Quan
,
S. L.
,
2011
, “
A Self-Standing Two-Fluid CFD Model for Vertical Upward Two-Phase Annular Flow
,”
Nucl. Eng. Des.
,
241
(
5
), pp.
1636
1642
.10.1016/j.nucengdes.2011.01.037
23.
Zhang
,
R.
,
Liu
,
H.
, and
Zhao
,
C.
,
2013
, “
A Probability Model for Solid Particle Erosion in a Straight Pipe
,”
Wear
,
308
(
1–2
), pp.
1
9
.10.1016/j.wear.2013.09.011
24.
Zhang
,
R.
,
Zhang
,
F.
, and
Dong
,
S.
,
2018
, “
Analysis of the Interchange Rate and Pressure Gradient of Annular Flow Based on a Probability Model
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
10
), p.
102003
.10.1115/1.4040346
25.
Batchelor
,
G. K.
,
1953
,
The Theory of Homogeneous Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
26.
Kolmogorov
,
A. N.
,
1991
, “
Dissipation of Energy in the Locally Isotropic Turbulence
,”
Proc. Math. Phys. Sci.
,
434
(
1890
), pp.
15
17
.10.1098/rspa.1991.0076
27.
Chibbaro
,
S.
, and
Minier
,
J. P.
,
2008
, “
Langevin PDF Simulation of Particle Deposition in a Turbulent Pipe Flow
,”
J. Aerosol Sci.
,
39
(
7
), pp.
555
571
.10.1016/j.jaerosci.2008.03.002
28.
Guingo
,
M.
, and
Minier
,
J. P.
,
2008
, “
A Stochastic Model of Coherent Structures for Particle Deposition in Turbulent Flows
,”
Phys. Fluids
,
20
(
5
), p.
053303
.10.1063/1.2908934
29.
Jin
,
C.
,
Potts
,
I.
, and
Reeks
,
M. W.
,
2015
, “
A Simple Stochastic Quadrant Model for the Transport and Deposition of Particles in Turbulent Boundary Layers
,”
Phys. Fluids
,
27
(
5
), p.
053305
.10.1063/1.4921490
30.
Laufer
,
J.
,
1954
,
The Structure of Turbulent Flow in Fully Developed Pipe Flow
,
National Advisory Committee for Aeronautics
,
Washington, DC
, Report No. 1174.
31.
White
,
F. M.
,
2011
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
32.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact. Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.10.1016/j.wear.2005.01.039
33.
Okayama
,
Y.
,
1986
, “
A Study of the Wear a Steel Dredge Pipeline and Wear Resistance of a Polyurethane Lined Pipe
,”
Dredging and Port Construction
,
13
(
2
), pp.
49
55
.
34.
Postlethwaite
,
J.
, and
Nesic
,
S.
,
1993
, “
Erosion in Disturbed Liquid/Particle Pipe Flow: Effects of Flow Geometry and Particle Surface Roughness
,”
Corrosion
,
49
(
10
), pp.
850
857
.10.5006/1.3316009
35.
McLaury
,
B. S.
,
1996
, “
Predicting Solid Particle Erosion Resulting From Turbulent Fluctuation in Oil Field Geometries
,” Ph.D. thesis,
The University of Tulsa
,
Tulsa, OK
.
36.
Wood
,
R. J. K.
,
Jones
,
T. F.
,
Ganeshalingam
,
J.
, and
Miles
,
J.
,
2004
, “
Comparison of Predicted and Experimental Erosion Estimates in Slurry Ducts
,”
Wear
,
256
(
9–10
), pp.
937
947
.10.1016/j.wear.2003.09.002
37.
Cousins
,
L. B.
,
Denton
,
W. H.
, and
Hewitt
,
G. F.
,
1965
, “
Liquid Mass Transfer in Annular Two-Phase Flow
,” Harwell, Exeter, UK, UKAEA Report, AERE Report No. 4926.
38.
Hinkle
,
W. D.
,
1967
, “
A Study of Liquid Mass Transport in Annular Air-Water Flow
,” Ph.D. thesis,
Department of Nuclear Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.
39.
Cousins
,
L. B.
, and
Hewitt
,
G. F.
,
1968
, “
Liquid Phase Mass Transfer in Annular Two-Phase Flow: Droplet Deposition and Liquid Entrainment
,” Harwell, Exeter, UK, UKAEA Report, AERE Report No. 5657.
40.
Schadel
,
S. A.
,
1988
, “
Atomization and Deposition Rates in Vertical Annular Two-Phase Flow
,” Ph.D. thesis, Department of Chemical Engineering,
University of Illinois at Urbana-Champaign
,
Champaign, IL
.
41.
Lopez de Bertodano
,
M. A.
,
Assad
,
A.
, and
Beus
,
S. G.
,
2001
, “
Experiments for Entrainment Rate of Droplets in the Annular Regime
,”
Int. J. Multiphase Flow
,
27
(
4
), pp.
685
699
.10.1016/S0301-9322(00)00046-X
42.
Oberg
,
E.
,
Jones
,
F. D.
,
Horton
,
H. L.
, and
Ryffel
,
H. H.
,
2016
,
Machinery's Handbook
, 30th ed.,
Industrial Press
,
New York
.
You do not currently have access to this content.