Abstract

The formation of a gravity-driven falling particle curtain is important for many problems, including solar tower particle receivers and setting the correct initial conditions for modeling shock interaction with multiphase media. One important characteristic of the curtain is the time history of its fractal dimension that characterizes the evolutionary growth of perturbations along the curtain's extent. For multiphase flows, fractal dimension can be used to help predict the types of instabilities that will occur within the flow. Our experiment aimed to establish the transient and stationary-value fractal dimension of a dense particle curtain with varying thickness containing particles with a density of 1.44 gm/cm3 and nominal diameter of 40 μm. High-speed video of the curtain was captured and analyzed. This data from this experiment, besides providing insights into the relevant physical processes, will be used to validate numerical models for multiphase flows.

References

1.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Energy Procedia
,
49
, pp.
398
407
.10.1016/j.egypro.2014.03.043
2.
Ho
,
C. K.
,
Kinahan
,
S.
,
Ortega
,
J. D.
,
Vorobieff
,
P.
,
Mammoli
,
A.
, and
Martins
,
V.
, “
Characterization of Particle and Heat Losses from Falling Particle Receivers
,”
ASME
Paper No. ES2019-3826.10.1115/ES2019-3826
3.
Wardjiman
,
C.
,
Lee
,
A.
,
Sheehan
,
M.
, and
Rhodes
,
M.
,
2009
, “
Shape of a Particle Curtain Falling in Stagnant Air
,”
Powder Technol.
,
192
(
3
), pp.
384
388
.10.1016/j.powtec.2009.01.009
4.
Prestridge
,
K.
,
Vorobieff
,
P.
,
Rightley
,
P. M.
, and
Benjamin
,
R. F.
,
2000
, “
Validation of an Instability Growth Model Using Particle Image Velocimetry Measurements
,”
Phys. Rev. Lett.
,
84
(
19
), pp.
4353
4356
.10.1103/PhysRevLett.84.4353
5.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Vortex Formation in a Shock-Accelerated as Induced by Particle Seeding
,”
Phys. Rev. Lett.
,
106
(
18
), p.
184503
.10.1103/PhysRevLett.106.184503
6.
Jacobs
,
G. B.
, and
Don
,
W. S.
,
2009
, “
A High-Order WENO-Z Finite Difference Based Particle-Source-in-Cell Method for Computation of Particle-Laden Flows With Shocks
,”
J. Comput. Phys.
,
228
(
5
), pp.
1365
1379
.10.1016/j.jcp.2008.10.037
7.
Jacobs
,
G.
, and
Vorobieff
,
P.
,
2018
, “
Instabilities in a Shock Interaction With a Perturbed Curtain of Particles
,”
Multiphase Flow: Theory Appl.
,
6
(
1
), pp.
59
70
.10.2495/CMEM-V6-N1-59-70
8.
Niederhaus
,
C.
,
2000
, “
Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids
,” Ph.D. thesis,
University of Arizona
, Tucson, AZ.
9.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
10.
Vetter
,
M.
, and
Sturtevant
,
B.
,
1995
, “
Experiments on the Richtmyer-Meshkov Instability of an Air/SF6 Interface
,”
Shock Waves
,
4
(
5
), pp.
247
252
.10.1007/BF01416035
11.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C. R.
, and
Kumar
,
S.
,
2011
, “
Analogues of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Flows With Nonuniform Particle and Droplet Seeding
,”
WIT Trans. Eng. Sci.
,
70
, pp.
17
28
.10.2495/MPF110021
12.
Vorobieff
,
P.
,
Wayne
,
P.
,
Reddy Lingampally
,
S.
,
Vigil
,
G.
,
Ludwigsen
,
J.
,
Freelong
,
D.
,
Truman
,
C. R.
, and
Jacobs
,
G.
,
2020
, “
Formation of a Falling Particle Curtain
,”
Int. J. Comput. Methods Exp. Meas.
,
8
(
1
), pp.
27
35
.10.2495/CMEM-V8-N1-27-35
13.
Lingampally
,
S.
,
Wayne
,
P.
,
Cooper
,
S.
,
Izard
,
R.
,
Jacobs
,
G.
, and
Vorobieff
,
P.
,
2017
, “
Studies of Shock Wave Interaction With a Curtain of Massive Particles
,”
Bull. Am. Phys. Soc.
,
62
(
14
)
M21.7
.https://www.brenntag.com/media/documents/bsi/product-data-sheets/materialscience/potters/spheriglass_a_and_e_series_pds.pdf
14.
Flohr
,
P.
, and
Olivari
,
D.
,
1994
, “
Fractal and Multifractal Characteristics of a Scalar Dispersed in a Turbulent Jet
,”
Phys. D: Nonlinear Phenom.
,
76
(
1–3
), pp.
278
290
.10.1016/0167-2789(94)90264-X
15.
Vorobieff
,
P.
,
Rightley
,
P. M.
, and
Benjamin
,
R. F.
,
1999
, “
Shock-Driven as Curtain: Fractal Dimension Evolution in Transition to Turbulence
,”
Phys. D: Nonlinear Phenom.
,
133
(
1–4
), pp.
469
476
.10.1016/S0167-2789(99)00079-2
16.
Potters Industries LLC
,
2013
,
Spheriglass Solid Glass Microspheres Data Sheet
,
Valley Forge
,
PA
.
17.
Rueden
,
C.
,
2019
, Fiji, Software Package, Ver. 1.0,
University of Wisconsin-Madison
,
Madison, WI
, accessed Jan. 15, 2019, https://fiji.sc/
18.
Karperien
,
A.
,
1999–2003
, FracLac for ImageJ, Software Package, Ver. 1.0,
Charles Sturt University
,
Australia
, accessed Jan. 15, 2019, http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm
19.
Anderson
,
M.
,
Vorobieff
,
P.
,
Truman
,
C. R.
,
Corbin
,
C.
,
Kuehner
,
G.
,
Wayne
,
P.
,
Conroy
,
J.
,
White
,
R.
, and
Kumar
,
S.
,
2015
, “
An Experimental and Numerical Study of Shock Interaction With a as Column Seeded With Droplets
,”
Shock Waves
,
25
(
2
), pp.
107
125
.10.1007/s00193-015-0555-6
You do not currently have access to this content.