Abstract

Couette flow with nonhomogeneous partial-slip stripes on one plate is studied. Drag and flowrate are found by an efficient eigenfunction expansion and point match method. Longitudinal motion (parallel to the stripes) experiences lower drag than transverse motion. As the gap width between the two plates approaches zero, the drag increases to a finite value if the stripes have partial slip, as comparison to the infinite value for no slip. Analysis of the region near the junction of a perfect stick-slip boundary shows a weak stress singularity while there is no singularity for partial slip junctions.

References

1.
Choi
,
C. H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
,
15
(
10
), p.
2897
.10.1063/1.1605425
2.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
,
2004
, “
Laminar Drag Reduction in Microchannels Using Ultra-Hydrophobic Surfaces
,”
Phys. Fluids
,
16
(
12
), pp.
4635
4643
.10.1063/1.1812011
3.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids
,
21
(
8
), p.
085103
.10.1063/1.3207885
4.
Song
,
D.
,
Daniello
,
R. J.
, and
Rothstein
,
J. P.
,
2014
, “
Drag Reduction Using Superhydrophobic Sanded Teflon Surfaces
,”
Exp. Fluids
,
55
, p.
4783
.
5.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W.
, and
Meyer
,
R.
,
2000
, “
Fluid Mechanics of Biological Surfaces and Their Technological Application
,”
Naturwissenshaften
,
87
(
4
), pp.
157
171
.10.1007/s001140050696
6.
Jung
,
Y. C.
, and
Bhushan
,
B.
,
2010
, “
Biometric Structures for Fluid Drag Reduction in Laminar and Turbulent Flows
,”
J. Phys. Cond. Matt.
,
22
(
3
), p.
035104
.10.1088/0953-8984/22/3/035104
7.
Lee
,
J.
,
Kim
,
H.
, and
Park
,
H.
,
2018
, “
Effects of Superhydrophobic Surfaces on the Flow Around an NACA0012 Hydrofoil at Low Reynolds Numbers
,”
Exp. Fluids
,
59
, p.
111
.10.1007/s00348-018-2564-6
8.
Sooraj
,
P.
,
Jain
,
S.
, and
Agrawal
,
A.
,
2019
, “
Flow Over Hydrofoils With Varying Hydrophobicity
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
479
492
.10.1016/j.expthermflusci.2018.12.021
9.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S. J.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.10.1088/0034-4885/68/12/R05
10.
Rothstein
,
J.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Ann. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.10.1146/annurev-fluid-121108-145558
11.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2016
, “
Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review
,”
Exp. Fluids
,
57
(
12
), p.
176
.10.1007/s00348-016-2264-z
12.
Shu
,
J. J.
,
Teo
,
J. B. M.
, and
Chan
,
W. K.
,
2017
, “
Fluid Velocity Slip and Temperature Jump at a Solid Surface
,”
ASME Appl. Mech. Rev.
,
69
(
2
), p.
020801
.10.1115/1.4036191
13.
Philip
,
J. R.
,
1972
, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
J. Appl. Math. Phys.
,
23
(
3
), pp.
353
372
.10.1007/BF01595477
14.
Lauga
,
E.
, and
Stone
,
H. A.
,
2003
, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.10.1017/S0022112003004695
15.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
É.
,
Bocquet
,
L.
, and
Barrat
,
J.-L.
,
2004
, “
Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. J. Phys. E
,
15
(
4
), pp.
427
438
.10.1140/epje/i2004-10061-9
16.
Belyaev
,
A. V.
, and
Vinogradova
,
O. I.
,
2010
, “
Effective Slip in Pressure-Driven Flow Past Superhydrophobic Stripes
,”
J. Fluid Mech.
,
652
, pp.
489
499
.10.1017/S0022112010000741
17.
Asmolov
,
E. S.
,
Schmieschek
,
S. M. P.
,
Harting
,
J. D. R.
, and
Vinogradova
,
O. I.
,
2013
, “
Flow Pas Superhydrophobic Surfaces With Cosine Variation in Local Slip Length
,”
Phys. Rev. E
,
87
(
2
), p.
23005
.10.1103/PhysRevE.87.023005
18.
Kumar
,
A.
,
Datta
,
S.
, and
Kalyanasundaram
,
D.
,
2016
, “
Permeability and Effective Slip in Confined Flows Transverse to Wall Slippage Patterns
,”
Phys. Fluids
,
28
(
8
), p.
082002
.10.1063/1.4959184
19.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C. J.
,
2006
, “
Drag Reduction on Patterned Superhydrophobic Surfaces
,”
Phys. Rev. Lett.
,
97
(
4
), p.
044504
.10.1103/PhysRevLett.97.044504
20.
Ligrani
,
P.
,
Blanchard
,
D.
, and
Gale
,
B.
,
2010
, “
Slip Due to Surface Roughness for Newtonian Fluid in a Viscous Microscale Disk Pump
,”
Phys. Fluids
,
22
(
5
), p.
052002
.10.1063/1.3419081
21.
Sherman
,
F. S.
,
1990
,
Viscous Flow
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.