Abstract

The effect of temperature depending material properties on heat and momentum transfer along heated/cooled walls in turbulent pipe flow was investigated using direct numerical simulations (DNS). For the considered thermal wall conditions, always associated with a molecular Prandtl number well over unity Prw = 10, the significantly dampened/enhanced turbulent motion caused by the increase/decrease of the viscosity with distance to the heated/cooled wall turned out to clearly dominate over the opposite trend of the enthalpy fluctuations. The Nusselt number and, quantitatively less pronounced, the wall friction coefficient are accordingly decreased/increased for the heated/cooled case. A comparison against a well-established Nu-correlation unveils the limits of the generally applied approach, which is essentially based on uniform bulk flow conditions and subsequently modified accounting for material property variation, when applied to heated and cooled conditions. An enhanced disparity of the turbulent normal stresses is observed inside the inertial subrange for the heated case, indicating a stronger deviation from isotropic turbulence, which possibly challenges mostly isotropic standard turbulence models.

References

1.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
,
1992
, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
114
(
3
), pp.
598
606
.10.1115/1.2911323
2.
Piller
,
M.
,
2005
, “
Direct Numerical Simulation of Turbulent Forced Convection in a Pipe
,”
Int. J. Numer. Methods Fluids
,
49
(
6
), pp.
583
602
.10.1002/fld.994
3.
Lyons
,
S.
,
Hanratty
,
T.
, and
McLaughlin
,
J.
,
1991
, “
Direct Numerical Simulation of Passive Heat Transfer in a Turbulent Channel Flow
,”
Int. J. Heat Mass Transfer
,
34
(
4–5
), pp.
1149
1161
.10.1016/0017-9310(91)90024-9
4.
Redjem-Saad
,
L.
,
Ould-Rouiss
,
M.
, and
Lauriat
,
G.
,
2007
, “
Direct Numerical Simulation of Turbulent Heat Transfer in Pipe Flows: Effect of Prandtl Number
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
847
861
.10.1016/j.ijheatfluidflow.2007.02.003
5.
Kozuka
,
M.
,
Seki
,
Y.
, and
Kawamura
,
H.
,
2009
, “
DNS of Turbulent Heat Transfer in a Channel Flow With a High Spatial Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
514
524
.10.1016/j.ijheatfluidflow.2009.02.023
6.
Nicoud
,
F.
, and
Poinsot
,
T.
,
1999
, “
DNS of a Channel Flow With Variable Properties
,”
Proceedings of the First Symposium of Turbulence and Shear Flow Phenomena
, Santa Barbara, CA.
7.
Van Driest
,
E. R.
,
1951
, “
Turbulent Boundary Layers in Compressible Fluids
,”
J. Aeronaut. Sci.
,
18
(
3
), pp.
145
160
.10.2514/8.1895
8.
Patel
,
A.
,
Peeters
,
J. W. R.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2015
, “
Semi-Local Scaling and Turbulence Modulation in Variable Property Turbulent Channel Flows
,”
Phys. Fluids
,
27
(
9
), p.
095101
.10.1063/1.4929813
9.
Huang
,
P.
,
Coleman
,
G.
, and
Bradshaw
,
P.
,
1995
, “
Compressible Turbulent Channel Flows: DNS Results and Modelling
,”
J. Fluid Mech.
,
305
, pp.
185
218
.10.1017/S0022112095004599
10.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2016
, “
The Effect of Thermal Boundary Conditions on Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
J. Fluid Mech.
,
800
, pp.
531
556
.10.1017/jfm.2016.411
11.
Wan
,
T.
,
Zhao
,
P.
,
Liu
,
J.
,
Wang
,
C.
, and
Lei
,
M.
,
2020
, “
Mean Velocity and Temperature Scaling for Near-Wall Turbulence With Heat Transfer at Supercritical Pressure
,”
Phys. Fluids
,
32
(
5
), pp.
55
103
.10.1063/5.0002855
12.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2012
, “
Modulation of Turbulence in Forced Convection by Temperature-Dependent Viscosity
,”
J. Fluid Mech.
,
697
, pp.
150
174
.10.1017/jfm.2012.67
13.
Antoranz
,
A.
,
Flores
,
O.
, and
García-Villalba
,
M.
,
2020
, “
DNS of Turbulent Pipe Flow With Temperature-Dependent Fluid Properties Subject to Non-Uniform External Heating
,”
Direct and Large Eddy Simulation XII
,
M.
García-Villalba
,
H.
Kuerten
, and
M. V.
Salvetti
, eds.,
Springer International Publishing
, Berlin, pp.
233
238
.
14.
Lee
,
J.
,
Jung
,
S. Y.
,
Sung
,
H. J.
, and
Zaki
,
T. A.
,
2013
, “
Effect of Wall Heating on Turbulent Boundary Layers With Temperature-Dependent Viscosity
,”
J. Fluid Mech.
,
726
, pp.
196
225
.10.1017/jfm.2013.211
15.
Ghajar
,
A. J.
, and
Tam
,
L.-M.
,
1994
, “
Heat Transfer Measurements and Correlations in the Transition Region for a Circular Tube With Three Different Inlet Configurations
,”
Exp. Therm. Fluid Sci.
,
8
(
1
), pp.
79
90
.10.1016/0894-1777(94)90075-2
16.
Churchill
,
S. W.
,
1977
, “
Comprehensive Correlation Equations for Heat, Mass, and Momentum Transfer
,”
Ind. Chem. Eng. Fundam.
,
16
(
1
), pp.
109
116
.10.1021/i160061a021
17.
Gnielinski
,
V.
,
1975
, “
New Equations for Heat and Mass Transfer in the Turbulent Flow in Pipes and Channels
,”
NASA STI/Recon Tech. Rep. A
,
41
(
1
), pp.
8
16
.
18.
Bertsche
,
D.
,
Knipper
,
P.
, and
Wetzel
,
T.
,
2016
, “
Experimental Investigation on Heat Transfer in Laminar, Transitional and Turbulent Circular Pipe Flow
,”
Int. J. Heat Mass Transfer
,
95
, pp.
1008
1018
.10.1016/j.ijheatmasstransfer.2016.01.009
19.
Lemos
,
E. M.
,
Secchi
,
A. R.
, and
Biscaia, Jr.
,
E. C.
,
2012
, “
Development of High-Order Finite Volume Method With Multiblock Partition Techniques
,”
Bras. J. Chem. Eng.
,
29
(
1
), pp.
183
201
.10.1590/S0104-66322012000100019
20.
Chorin
,
A.
,
1968
, “
Numerical Solution of the Navier-Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
21.
Wu
,
X.
, and
Moin
,
P.
,
2008
, “
A Direct Numerical Simulation Study on the Mean Velocity Characteristics in Turbulent Pipe Flow
,”
J. Fluid Mech.
,
608
(
08
), pp.
81
112
.10.1017/S0022112008002085
22.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
23.
Schwertfirm
,
F.
, and
Manhart
,
M.
,
2007
, “
Dns of Passive Scalar Transport in Turbulent Channel Flow at High Schmidt Numbers
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1204
1214
.10.1016/j.ijheatfluidflow.2007.05.012
24.
Hufschmidt
,
W.
, and
Burck
,
E.
,
1968
, “
Der Einfluss Temperaturabhängiger Stoffwerte Auf Den Wärmeübergang Bei Turbulenter Strömung Von Flüssigkeiten in Rohren Bei Hohen Wärmestromdichten Und Prandtlzahlen
,”
Int. J. Heat Mass Transfer
,
11
(
6
), pp.
1041
1048
.10.1016/0017-9310(68)90009-4
25.
Filonenko
,
G. K.
,
1954
, “
Hydraulischer Widerstand Von Rohrleitungen
,”
Teploenergetika
,
4
, pp.
40
44
.
26.
Petukhov
,
B. S.
, and
Popov
,
V. N.
,
1963
, “
Theoretical Calculation of Heat Exchange and Frictional Resistance in Turbulent Flow in Tubes of an Incompressible Fluid With Variable Physically Properties
,”
High Temp.
,
1
, pp.
69
83
.
27.
Gnielinski
,
V.
,
2013
, “
On Heat Transfer in Tubes
,”
Int. J. Heat Mass Transfer
,
63
, pp.
134
140
.10.1016/j.ijheatmasstransfer.2013.04.015
You do not currently have access to this content.