Abstract

This paper investigates and compares four commonly used flow transport equation-based cavitation models and their applicability to predict the cavitation performance of an industrial centrifugal pump with a helical inducer. The main purpose of this study is to identify, for this specific application, the most appropriate cavitation model and the associated empirical constants. Each cavitation model is reviewed in detail and the uniqueness of each model is outlined. Each cavitation model is incorporated in a computational fluid dynamics code to study the vaporization and condensation transport rate of the fluid. Experimental tests are conducted on a pump system to determine the true cavitation performance in terms of net positive suction head (NPSH). Experimental results are compared to simulation results for different cavitation models to validate cavitation performance predictions, along with the empirical constants. Lastly, bubble formation, cavitation inception, and bubble growth predicted by each cavitation model are compared with the experimental results. A sensitivity analysis is conducted in order to determine the impact of each set of empirical constants to the condensation and the vaporization rate in the centrifugal pump. Results show that two of the cavitation models exhibit high dependency on the empirical constants in terms of change in vaporization rate. Modifications to empirical constants for two of the four cavitation models are suggested to obtain agreement with the experimentally observed cavitation behavior and better predict NPSH performance for the industrial pump studied.

References

1.
Jakobsen
,
J. K.
,
1971
, “
Liquid Rocket Engine Turbopump Inducers
,” NASA, Washington, DC, Report No.
SP-8052
.https://ntrs.nasa.gov/citations/19710025474
2.
Scheer
,
D. D.
,
Huppert
,
M. C.
,
Viteri
,
F.
, and
Farquhar
,
J.
,
1978
, “
Liquid Rocket Engine Axial-Flow Turbopumps
,” NASA, Washington, DC, Report No.
SP-8125
.http://adsabs.harvard.edu/full/1978NASSP8125
3.
Kovich
,
G.
,
1970
, “
Cavitation Performance of 84 deg Helical Inducer in Water and Hydrogen
,” NASA, Washington, DC, Report No. TN-D-7016.
4.
Edward
,
J. R.
,
Franklin
,
R. K.
, and
Liou
,
M.-S.
,
2000
, “
Low-Diffusion Flux Splitting Methods for Real Fluid Flow With Phase Transitions
,”
AIAA J.
,
38
(
9
), pp.
1624
1633
.10.2514/2.1145
5.
Goncalves
,
E.
, and
Patella
,
R. F.
,
2011
, “
Constraints on Equation of State for Cavitating Flows With Thermodynamic Effects
,”
Appl. Math. Comput.
,
217
(
11
)pp, pp.
5095
5102
.10.1016/j.amc.2010.07.056
6.
Kyriazis
,
N.
,
Koukouvinis
,
P.
, and
Gavaises
,
M.
,
2017
, “
Numerical Investigation of Bubble Dynamics Using Tabulated Data
,”
Int. J. Multiphase Flow
,
93
, pp.
158
177
.10.1016/j.ijmultiphaseflow.2017.04.004
7.
Goncalves
,
E.
,
Champagnac
,
M.
, and
Fortes Patella
,
R.
,
2010
,“
Comparison of Numerical Solvers for Cavitating Flows
,”
Int. J. Fluid Dyn.
,
24
(
6
), pp.
201
216
.10.1080/10618562.2010.521131
8.
Ghahramani
,
E.
,
Arabnejad
,
M. H.
, and
Bensow
,
R. E.
,
2019
, “
A Comparative Study Between Numerical Methods in Simulation of Cavitating Bubbles
,”
Int. J. Multiphase Flow
,
111
, pp.
339
359
.10.1016/j.ijmultiphaseflow.2018.10.010
9.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
International Conference on Multiphase Flow
,
Yokohama, Japan
, May 30–June 3, Paper No. 152.https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
10.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Fluid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
11.
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2000
, “
Unsteady Cavitation Flow-A New Cavitation Model Based on a Modified Front Capturing Method and Bubble Dynamics
,”
ASME Paper No. FEDSM2000-11095.
12.
Senocak
,
I.
, and
Shyy
,
W.
,
2002
, “
Evaluation of Cavitation Models for Navier–Stokes Computations
,”
ASME
Paper No. FEDSM2002-31011.10.1115/FEDSM2002-31011
13.
Plesset
,
M. S.
,
1949
, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
(
3
), pp.
277
282
.10.1115/1.4009975
14.
Koukouvinis
,
P.
, and
Gavaises
,
M.
,
2015
, “
Simulation of Throttle Flow With Two Phase and Single Phase Homogeneous Equilibrium Model
,”
J. Phys. Conf. Ser.
,
656
, p.
012086
.10.1088/1742-6596/656/1/012086
15.
Melissaris
,
T.
,
Schenke
,
S.
,
Bulten
,
N.
, and
van Terwisga
,
T. J. C.
,
2020
, “
On the Accuracy of Predicting Cavitation Impact Loads on Marine Propellers
,”
Wear
,
456–457
, p.
203393
.10.1016/j.wear.2020.203393
16.
Schenke
,
S.
, and
van Terwisga
,
T. J. C.
,
2019
, “
An Energy Conservative Method to Predict the Erosive Aggressiveness of Collapsing Cavitating Structures and Cavitating Flows From Numerical Simulations
,”
Int. J. Multiphase Flow
,
111
, pp.
200
218
10.1016/j.ijmultiphaseflow.2018.11.016
17.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
18.
Tsuda
,
S.
,
Tani
,
N.
, and
Yamanishi
,
N.
,
2012
, “
Development and Validation of a Reduced Critical Radius Model for Cryogenic Cavitation
,”
ASME J. Fluids Eng.
,
134
(
5
), p. 051301.10.1115/1.4006469
19.
Senocak
,
I.
, and
Shyy
,
W.
,
2001
, “
Numerical Solution of Turbulent Flows With Sheet Cavitation
,”
Proceedings of the Fourth International Symposium on Cavitation
, CAV2001:sessionA7.002, June 20–23, California Institute of Technology, Pasadena, CA.https://resolver.caltech.edu/CAV2001:sessionA7.002
20.
Jian
,
W.
,
Yong
,
W.
,
Houlin
,
L.
,
Qiaorui
,
S.
, and
Dular
,
M.
,
2018
, “
Rotating Corrected-Based Cavitation Model for a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
11
), p. 111301.10.1115/1.4040068
21.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Thomas
,
S. C.
,
Jules
,
W. L.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T. R.
,
2000
, “
A Preconditioned Navier Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
22.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of Dynamics of Sheet Cavitation
,”
Proceedings of the Third International Symposium on Cavitation
,
France
, Apr. 7–10.https://www.worldcat.org/title/third-internationalsymposium-on-cavitation-april-7-10-1998-grenoble-france-proceedings/oclc/456619028
23.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modelling of Cavitation Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluids Mech.
,
240
(
1
), pp.
59
96
.10.1017/S002211209200003X
24.
Kinzel
,
M. P.
,
Lindau
,
J. W.
, and
Kunz
,
R. F.
,
2019
, “
An Assessment of Computational Fluid Dynamics Cavitation Models Using Bubble Growth Theory and Bubble Transport Modelling
,”
ASME J. Fluids Eng.
,
141
(
4
), p. 041301.10.1115/1.4042421
25.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigation of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.10.1155/S1023621X04000028
26.
Mejri
,
I.
,
Bakir
,
F.
,
Rey
,
R.
, and
Belamri
,
T.
,
2006
, “
Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigation of Three Inducers
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1308
1323
.10.1115/1.2353265
27.
Campos-Amezcua
,
R.
,
Khelladi
,
S.
,
Mazur-Czerwiec
,
Z.
,
Bakir
,
F.
,
Campos-Amezcua
,
A.
, and
Rey
,
R.
,
2013
, “
Numerical and Experimental Study of Cavitating Flow Through an Axial Inducer Considering Tip Clearance
,”
J. Power Energy
,
227
(
8
).10.1177/0957650913497357
28.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
ASME J. Fluids Eng.
,
134
(
2
), p. 021302.10.1115/1.4005903
29.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI
,
Norwich
, VT and Oxford University Press, Oxford, UK.
30.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow
, ICMF-2001, New Orleans, LA, May 27–June 1.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
31.
Karakas
,
E.
,
2019
, “
Computational Investigation of Cavitation Performance and Heat Transfer in Cryogenic Centrifugal Pumps With Helical Inducers
,” Ph.D. dissertation,
University of Nevada
,
Reno, NV
.
32.
Reisman
,
G. E.
,
Duttweiler
,
M. E.
, and
Brennen
,
C.
,
1997
, “
Effect of Air Injection on the Cloud Cavitation of a Hydrofoil
,”
ASME
Paper No. FEDSM97-324910.1115/FEDSM97-3249.
33.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
34.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1983
, “
Fluid Mechanics
,” First SI Metric Edition, McGraw-Hill, New York.
35.
Gülich
,
J. F.
, 2010,
Centrifugal Pumps
,
Springer
,
Berlin
.
36.
Karakas
,
E. S.
,
Watanabe
,
H.
,
Aureli
,
M.
, and
Evrensel
,
C. A.
,
2020
, “
Cavitation Performance of Constant and Variable Pitch Inducers for Centrifugal Pumps: Effect of Tip Clearance
,”
ASME J. Fluids Eng.
,
142
(
2
), p. 021211.10.1115/1.4044629
37.
Mani
,
K. V.
,
Cervone
,
A.
, and
Hickey
,
J.-P.
,
2017
, “
Turbulence Modeling of Cavitating Flows in Liquid Rocket Turbopumps
,”
ASME J. Fluids Eng.
,
139
(
1
), p. 011301.10.1115/1.4034096
38.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
,“
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
39.
Grotjans
,
H.
, and
Menter
,
F. R.
,
1998
, “
Wall Functions for General Application CFD Codes
,”
Proceedings of the Fourth European Computational Fluid Dynamics Conference
, Vol 1 pts, 1–2, 2; 1112–1117; Athens.https://www.tib.eu/en/search/id/BLCP%3ACN027337170/Wall-Functions-for-General-Application-CFD-Codes/
40.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
41.
Senocak
,
I.
, and
Shyy
,
W.
,
2004
, “
Interfacial Dynamics-Based Modelling of Turbulent Cavitating Flows, Part-1: Model Development and Steady-State Computations
,”
Int. J. Numer. Methods Fluids
,
44
(
9
), pp.
975
995
.10.1002/fld.692
42.
Zhang
,
X. B.
,
Qiu
,
L. M.
,
Gao
,
Y.
, and
Zhang
,
X. J.
,
2008
, “
Computational Fluid Dynamic Study on Cavitation in Liquid Nitrogen
,”
Cryogenics
,
48
(
9–10
), pp.
432
438
.10.1016/j.cryogenics.2008.05.007
43.
ANSYS
, 2018, “ANSYS CFX Release 19.1, User Manual—CFX Solver Theory Guide,”
ANSYS
, Canonsburg, PA.
You do not currently have access to this content.