Abstract

Increasing performance requirements and compact structure design promote the generation of axial–radial combined compressors. However, its complex structure and asymmetrical outlet boundary cause difficulty to get an in-depth comprehension of the flow unsteadiness associated with spike-stall. In this work, unsteady full-annular simulations of an axial–radial combined compressor coupled with performance experiment validations were carried out. Based on the overall understanding of outlet distortion on each component, the general feature of tip leakage flow with asymmetrical outlet boundary was extracted. The temporal and spatial development of large coherent perturbations was revealed by the decomposition and reconstruction of the transient flow data with the dynamic mode decomposition approach. The results demonstrate that the outlet distortion can propagate reversely to the compressor inlet and the degree of distortion decreases gradually, which leads to the highest possibility for radial rotor to suffer from flow unsteadiness. In the circumferential location with distortion affected, the leakage momentum of the adjacent blade leading edge is enhanced by the secondary leakage, inducing the expansion of tip leakage vortex and causing flow instability. Besides organized perturbation structures related to mean flow and blade passing frequency, two large low-frequency stall perturbations approximately one-third and three-fourth rotor frequency was captured by the dynamic mode decomposition method, which is caused by volute potential effect and stator/rotor interference, respectively. The former occurs in the radial rotor and decays during its propagation, while the latter always exists owing to the multiple rotor/stator or stator/rotor interference in the axial–radial combined compressor.

References

1.
Li
,
D.
,
Yang
,
C.
,
Zhao
,
B.
,
Zhou
,
M.
,
Qi
,
M.
, and
Zhang
,
J.
,
2011
, “
Investigation on Centrifugal Impeller in an Axial-Radial Combined Compressor With Inlet Distortion
,”
J. Therm. Sci.
,
20
(
6
), pp.
486
494
.10.1007/s11630-011-0500-7
2.
Kang
,
Y.
, and
H
,
S.
,
2010
, “
Prediction of the Nonuniform Tip Clearance Effect on the Axial Compressor Flow Field
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051110
.10.1115/1.4001553
3.
Puterbaugh
,
S.
, and
Copenhaver
,
W.
,
1997
, “
Flow Field Unsteadiness in the Tip Region of a Transonic Compressor Rotor
,”
ASME J. Fluids Eng.
,
119
(
1
), pp.
122
128
.10.1115/1.2819097
4.
Ross
,
M.
,
Cameron
,
J.
,
Morris
,
S.
,
Chen
,
H.
, and
Shi
,
K.
,
2018
, “
Axial Compressor Stall, Circumferential Groove Casing Treatment, and the Tip-Clearance Momentum Flux
,”
J. Propul. Power
,
34
(
1
), pp.
146
152
.10.2514/1.B36181
5.
Li
,
J.
,
Geng
,
S.
,
Du
,
J.
,
Zhang
,
H.
, and
Nie
,
C.
,
2019
, “
Circumferentially Propagating Characteristic Dominated by Unsteady Tip Leakage Flow in Axial Flow Compressors
,”
Aerosp. Sci. Technol.
,
85
, pp.
529
543
.10.1016/j.ast.2018.11.058
6.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Iwamoto
,
T.
, and
Ando
,
Y.
,
1991
, “
Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
281
289
.10.1115/1.2929102
7.
Deng
,
X.
,
Zhang
,
H.
,
Chen
,
J.
, and
Huang
,
W.
,
2005
, “
Unsteady Tip Clearance Flow in a Low-Speed Axial Compressor Rotor With Upstream and Downstream Stators
,”
ASME
Paper No. GT2005-68571.10.1115/GT2005-68571
8.
Geng
,
S.
,
Zhang
,
H.
,
Chen
,
J.
, and
Huang
,
W.
,
2007
, “
Numerical Study on the Unsteady Response of Tip Leakage Flow Unsteadiness to Discrete Micro Tip Injection in a Low-Speed Isolated Compressor
,”
ASME
Paper No. GT2007-2772.10.1115/GT2007-2772
9.
Wu
,
Y.
,
Li
,
Q.
,
Zhang
,
H.
, and
Chu
,
W.
,
2012
, “
Numerical Investigation Into the Mechanism of Spike-Type Stall Inception in an Axial Compressor Rotor
,”
Proc. Inst. Mech. Eng., Part A
,
226
(
2
), pp.
192
207
.10.1177/0957650911429642
10.
Hoying
,
D.
,
Tan
,
C.
,
Vo
,
H.
, and
Greitzer
,
E.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.10.1115/1.2836727
11.
Vo
,
H.
,
Tan
,
C.
, and
Greitzer
,
E.
,
2008
, “
Criteria for Spike Initiated Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
12.
Du
,
J.
,
Lin
,
F.
,
Zhang
,
H.
, and
Chen
,
J.
,
2010
, “
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow for a Transonic Fan Rotor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021017
.10.1115/1.3145103
13.
Yang
,
C.
,
Wang
,
W.
,
Zhang
,
H.
,
Yang
,
C.
, and
Li
,
Y.
,
2018
, “
Investigation of Stall Process Flow Field in Transonic Centrifugal Compressor With Volute
,”
Aerosp. Sci. Technol.
,
81
, pp.
53
64
.10.1016/j.ast.2018.07.047
14.
Bousquet
,
Y.
,
Carbonneau
,
X.
,
Dufour
,
G.
,
Binder
,
N.
, and
Trebinja
,
I.
,
2014
, “
Analysis of the Unsteady Flow Field in a Centrifugal Compressor From Peak Efficiency to Near Stall With Full-Annulus Simulations
,”
Int. J. Rotating Mach.
,
2014
(
2
), pp.
1
11
.10.1155/2014/729629
15.
Zhao
,
H.
,
Wang
,
Z.
, and
Xi
,
G.
,
2017
, “
Unsteady Flow Structures in the Tip Region for a Centrifugal Compressor Impeller Before Rotating Stall
,”
Sci. China Technol. Sci.
,
60
(
6
), pp.
924
934
.10.1007/s11431-016-9005-3
16.
Zamiri
,
A.
,
Lee
,
B.
, and
Chung
,
J.
,
2017
, “
Numerical Evaluation of Transient Flow Characteristics in a Transonic Centrifugal Compressor With Vaned Diffuser
,”
Aerosp. Sci. Technol.
,
70
(
C
), pp.
244
256
.10.1016/j.ast.2017.08.003
17.
Chen
,
G.
,
Greitzer
,
E.
,
Tan
,
C.
, and
Marble
,
F.
,
1991
, “
Similarity Analysis of Compressor Tip Clearance Flow Structure
,”
ASME J. Turbomach.
,
113
(
2
), pp.
260
269
.10.1115/1.2929098
18.
Roussopoulos
,
K.
, and
Monkewitz
,
P.
,
2000
, “
Measurements of Tip Vortex Characteristics and the Effect of an Anti-Cavitation Lip on a Model Kaplan Turbine Blade
,”
Flow Turbul. Combust.
,
64
(
2
), pp.
119
144
.10.1023/A:1009976411156
19.
Kang
,
S.
, and
Hirsch
,
C.
,
1996
, “
Numerical Simulation of Three-Dimensional Viscous Flow in a Linear Compressor Cascade With Tip Clearance
,”
ASME J. Turbomach.
,
118
(
3
), pp.
492
505
.10.1115/1.2836694
20.
Matzgeller
,
R.
, and
Burgold
,
Y.
, “
Investigation of Compressor Tip Clearance Flow Structure
,”
ASME
Paper No. GT2010-23244.10.1115/GT2010-23244
21.
Decaix
,
J.
,
Balarac
,
G.
,
Dreyer
,
M.
,
Farhat
,
M.
, and
Münch
,
C.
,
2015
, “
RANS and LES Computations of the Tip Leakage Vortex for Different Gap Widths
,”
J. Turbul.
,
16
(
4
), pp.
309
341
.10.1080/14685248.2014.984068
22.
Zhao
,
H.
,
Wang
,
Z.
,
Ye
,
S.
, and
Xi
,
G.
,
2016
, “
Numerical Investigations on Tip Leakage Flow Characteristics and Vortex Trajectory Prediction Model in Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
8
), pp.
757
772
.10.1177/0957650916673230
23.
Fu
,
L.
,
Hu
,
C.
,
Yang
,
C.
,
Bao
,
W.
, and
Zhou
,
M.
,
2020
, “
Vortex Trajectory Prediction and Mode Analysis of Compressor Stall With Strong Non-Uniformity
,”
Aerosp. Sci. Technol.
,
105
, p.
106031
.10.1016/j.ast.2020.106031
24.
Zheng
,
X.
,
Lin
,
Y.
, and
Sun
,
Z.
,
2018
, “
Effects of Volute's Asymmetry on the Performance of a Turbocharger Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part G
,
232
(
7
), pp.
1235
1246
.10.1177/0954410016670418
25.
Zhang
,
H.
,
Yang
,
C.
,
Yang
,
D.
,
Li
,
Y.
, and
Yang
,
C.
,
2019
, “
Investigation of Stall Inception Behavior in a Centrifugal Compressor With Bent Pipe/Volute Coupling Effect
,”
J. Propul. Power
,
35
(
2
), pp.
382
395
.10.2514/1.B36923
26.
Shu
,
M.
,
Yang
,
M.
,
Deng
,
K.
,
Zheng
,
X.
, and
Ricardo
,
F.
,
2018
, “
Performance Analysis of a Centrifugal Compressor Based on Circumferential Flow Distortion Induced by Volute
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), pp.
1
11
.10.1115/1.4040681
27.
Zheng
,
X.
,
Jin
,
L.
, and
Tamaki
,
H.
,
2014
, “
Influence of Volute-Induced Distortion on the Performance of a High-Pressure-Ratio Centrifugal Compressor With a Vaneless Diffuser for Turbocharger Applications
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
4
), pp.
440
450
.10.1177/0957650913519984
28.
Fu
,
L.
,
Yang
,
C.
,
Bao
,
W.
,
Zhang
,
H.
,
Yang
,
C.
, and
Li
,
Y.
,
2019
, “
Effect of Circumferential Static Pressure Non-Uniformity Caused by Volute on Tip Leakage Flow in a Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part G
,
233
(
14
), pp.
5134
5149
.10.1177/0954410019836905
29.
Fu
,
L.
,
Yang
,
C.
,
Zhang
,
H.
,
Bao
,
W.
, and
Zhang
,
H.
,
2020
, “
Influence of Vaned Diffuser on the Potential Effect of Volute and Stall Inception of Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part D
,
234
(
10–11
), pp.
2546
2560
.10.1177/0954407020916562
30.
Zheng
,
X.
,
Sun
,
Z.
,
Kawakubo
,
T.
, and
Tamaki
,
H.
,
2018
, “
Stability Improvement of a Turbocharger Centrifugal Compressor by a Nonaxisymmetric Vaned Diffuser
,”
ASME J. Turbomach.
,
140
(
4
), p.
041007
.10.1115/1.4038875
31.
Yi
,
W.
, and
Ji
,
L.
,
2018
, “
Experimental Investigation on the Performance of Compressor Cascade Using Blended-Blade-End-Wall Contouring Technology
,”
Proc. Inst. Mech. Eng., Part G
,
232
(
15
), pp.
2833
2844
.10.1177/0954410017720470
32.
Yang
,
J.
,
Xie
,
T.
,
Liu
,
X.
,
Si
,
Q.
, and
Liu
,
J.
,
2021
, “
Study of Unforced Unsteadiness in Centrifugal Pump at Partial Flow Rates
,”
J. Therm. Sci.
,
30
(
1
), pp.
88
99
.10.1007/s11630-019-1241-2
33.
Schmid
,
P.
, and
Sesterhenn
,
J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
(
10
), pp.
5
28
.10.1017/S0022112010001217
34.
Chen
,
K.
,
Tu
,
J.
, and
Rowley
,
C.
,
2012
, “
Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
,”
J. Nonlinear Sci.
,
22
(
6
), pp.
887
915
.10.1007/s00332-012-9130-9
35.
Muld
,
T.
,
Efraimsson
,
G.
, and
Henningson
,
D.
,
2012
, “
Flow Structures Around a High-Speed Train Extracted Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition
,”
Comput. Fluids
,
57
, pp.
87
97
.10.1016/j.compfluid.2011.12.012
36.
Yang
,
X.
,
Zhu
,
X.
,
Hu
,
C.
, and
Du
,
Z.
,
2018
, “
Compressed Dynamic Mode Decomposition for the Analysis of Centrifugal Compressor Volute
,”
Int. J. Heat Fluid Flow
,
74
, pp.
118
129
.10.1016/j.ijheatfluidflow.2018.09.013
37.
Hu
,
C.
,
Yang
,
C.
,
Yi
,
W.
,
Hadzic
,
K.
,
Xie
,
L.
,
Zou
,
R.
, and
Zhou
,
M.
,
2020
, “
Numerical Investigation of Centrifugal Compressor Stall With Compressed Dynamic Mode Decomposition
,”
Aerosp. Sci. Technol.
,
106
, p.
106153
.10.1016/j.ast.2020.106153
38.
Hu
,
C.
,
Yang
,
C.
,
Yi
,
W.
,
Zheng
,
S.
,
Zou
,
R.
, and
Zhou
,
M.
,
2020
, “
Influence of Shroud Profiling on the Compressor Diffuser: Frozen-Eddy Approach and Mode Decomposition
,”
Int. J. Mech. Sci.
,
178
, p.
105623
.10.1016/j.ijmecsci.2020.105623
39.
Hong
,
S.
,
Huang
,
G.
,
Yang
,
Y.
, and
Liu
,
Z.
,
2018
, “
Introduction of DMD Method to Study the Dynamic Structures of a Three-Dimensional Centrifugal Compressor With and Without Flow Control
,”
Energies
,
11
(
11
), p.
3098
.10.3390/en11113098
40.
Tu
,
J.
,
Rowley
,
W.
,
Luchtenburg
,
D.
,
Brunton
,
S.
, and
Kutz
,
J.
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
.10.3934/jcd.2014.1.391
41.
NUMECA International
, 2009, “
User Manual FINETM/Turbo v8.7
,”
NUMECA International
,
Brussels, Belgium
.
42.
Borm
,
O.
, and
Kau
,
H.
,
2012
, “
Unsteady Aerodynamics of a Centrifugal Compressor Stage–Validation of Two Different CFD Solvers
,”
ASME
Paper No. GT2012-69636.10.1115/GT2012-69636
43.
Lee
,
K.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart–Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.10.1115/1.4039051
44.
Schlechtriem
,
S.
, and
Lotzerich
,
M.
,
1997
, “
Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall
,”
ASME
Paper No. 97-GT-041.10.1115/97-GT-041
You do not currently have access to this content.