Abstract

Turbulent flows laden withlarge, deformable drops or bubbles are ubiquitous in nature and a number of industrial processes. These flows are characterized by physics acting at many different scales: from the macroscopic length scale of the problem down to the microscopic molecular scale of the interface. Naturally, the numerical resolution of all the scales of the problem, which span about eight to nine orders of magnitude, is not possible, with the consequence that numerical simulations of turbulent multiphase flows impose challenges and require methods able to capture the multiscale nature of the flow. In this review, we start by describing the numerical methods commonly employed and by discussing their advantages and limitations, and then we focus on the issues arising from the limited range of scales that can be possibly solved. Ultimately, the droplet size distribution, a key result of interest for turbulent multiphase flows, is used as a benchmark to compare the capabilities of the different methods and to discuss the main insights that can be drawn from these simulations. Based on this, we define a series of guidelines and best practices that we believe to be important in the analysis of the simulations and the development of new numerical methods.

References

1.
Jähne
,
B.
, and
Haußecker
,
H.
,
1998
, “
Air-Water Gas Exchange
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
443
468
.10.1146/annurev.fluid.30.1.443
2.
Pereira
,
R.
,
Ashton
,
I.
,
Sabbaghzadeh
,
B.
,
Shutler
,
J.
, and
Upstill-Goddard
,
R.
,
2018
, “
Reduced Air-Sea CO2 Exchange in the Atlantic Ocean Due to Biological Surfactants
,”
Nat. Geosci.
,
11
(
7
), pp.
492
496
.10.1038/s41561-018-0136-2
3.
Kralova
,
I.
, and
Sjöblom
,
J.
,
2009
, “
Surfactants Used in Food Industry: A Review
,”
J. Disper. Sci. Technol.
,
30
(
9
), pp.
1363
1383
.10.1080/01932690902735561
4.
Dickinson
,
E.
,
2010
, “
Food Emulsions and Foams: Stabilization by Particles
,”
Curr. Opin. Colloid Interface Sci.
,
15
(
1–2
), pp.
40
49
.10.1016/j.cocis.2009.11.001
5.
Karsa
,
D. R.
,
1999
,
Industrial Applications of Surfactants IV
,
Woodhead Publishing
, Cambridge, UK.
6.
Schramm
,
L. L.
,
Stasiuk
,
E. N.
, and
Marangoni
,
D. G.
,
2003
, “
Surfactants and Their Applications
,”
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
,
99
, pp.
3
48
.10.1039/B208499F
7.
Bourouiba
,
L.
,
Dehandschoewercker
,
E.
, and
Bush
,
J. W. M.
,
2014
, “
Violent Expiratory Events: On Coughing and Sneezing
,”
J. Fluid Mech.
,
745
, pp.
537
563
.10.1017/jfm.2014.88
8.
Balachandar
,
S.
,
Zaleski
,
S.
,
Soldati
,
A.
,
Ahmadi
,
G.
, and
Bourouiba
,
L.
,
2020
, “
Host-to-Host Airborne Transmission as a Multiphase Flow Problem for Science-Based Social Distance Guidelines
,”
Int. J. Multiphas. Flow
,
132
, p.
103439
.10.1016/j.ijmultiphaseflow.2020.103439
9.
Rosti
,
M. E.
,
Cavaiola
,
M.
,
Olivieri
,
S.
,
Seminara
,
A.
, and
Mazzino
,
A.
,
2021
, “
Turbulence Dictates the Fate of Virus-Containing Liquid Droplets in Violent Expiratory Events
,”
Phys. Rev. Res.
,
3
, p.
013091
.10.1103/PhysRevResearch.3.013091
10.
Rosti
,
M. E.
,
Olivieri
,
S.
,
Cavaiola
,
M.
,
Seminara
,
A.
, and
Mazzino
,
A.
,
2020
, “
Fluid Dynamics of COVID-19 Airborne Infection Suggests Urgent Data for a Scientific Design of Social Distancing
,”
Sci. Rep.
,
10
, p.
22426
.10.1038/s41598-020-80078-7
11.
Mittal
,
R.
,
Ni
,
R.
, and
Seo
,
J.-H.
,
2020
, “
The Flow Physics of COVID-19
,”
J. Fluid Mech.
,
894
, p.
F2
.10.1017/jfm.2020.330
12.
Bahl
,
P.
,
Doolan
,
C.
,
de Silva
,
C.
,
Chughtai
,
A.
,
Bourouiba
,
L.
, and
MacIntyre
,
C. R.
,
2020
, “
Airborne or Droplet Precautions for Health Workers Treating COVID-19?
,”
J. Infect. Dis.
, pp.
1
8
.10.1093/infdis/jiaa189
13.
Chong
,
K. L.
,
Ng
,
C. S.
,
Hori
,
N.
,
Yang
,
R.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2021
, “
Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission
,”
Phys. Rev. Lett.
,
126
(
3
), p.
034502
.10.1103/PhysRevLett.126.034502
14.
Scriven
,
L.
, and
Sternling
,
C.
,
1960
, “
The Marangoni Effects
,”
Nature
,
187
(
4733
), pp.
186
188
.10.1038/187186a0
15.
Dai
,
B.
, and
Leal
,
L.
,
2008
, “
The Mechanism of Surfactant Effects on Drop Coalescence
,”
Phys. Fluids
,
20
(
4
), pp.
1
13
.10.1063/1.2911700
16.
Takagi
,
S.
, and
Matsumoto
,
Y.
,
2011
, “
Surfactant Effects on Bubble Motion and Bubbly Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
615
636
.10.1146/annurev-fluid-122109-160756
17.
Vakarelski
,
I.
,
Yang
,
F.
,
Tian
,
Y.
,
Li
,
E.
,
Chan
,
D.
, and
Thoroddsen
,
S.
,
2019
, “
Mobile-Surface Bubbles and Droplets Coalesce Faster but Bounce Stronger
,”
Sci. Adv.
,
5
(
10
), p.
eaaw4292
.10.1126/sciadv.aaw4292
18.
Kamp
,
J.
,
Villwock
,
J.
, and
Kraume
,
M.
,
2017
, “
Drop Coalescence in Technical Liquid/Liquid Applications: A Review on Experimental Techniques and Modeling Approaches
,”
Rev. Chem. Eng.
,
33
(
1
), pp.
1
47
.10.1515/revce-2015-0071
19.
Reinecke
,
N.
,
Petritsch
,
G.
,
Schmitz
,
D.
, and
Mewes
,
D.
,
1998
, “
Tomographic Measurement Techniques—Visualization of Multiphase Flows
,”
Chem. Eng. Technol.
,
21
(
1
), pp.
7
18
.10.1002/(SICI)1521-4125(199801)21:1<7::AID-CEAT7>3.0.CO;2-K
20.
Lindken
,
R.
,
Gui
,
L.
, and
Merzkirch
,
W.
,
1999
, “
Velocity Measurements in Multiphase Flow by Means of Particle Image Velocimetry
,”
Chem. Eng. Technol.
,
22
(
3
), pp.
202
206
.10.1002/(SICI)1521-4125(199903)22:3<202::AID-CEAT202>3.0.CO;2-K
21.
Lindken
,
R.
, and
Merzkirch
,
W.
,
2002
, “
A Novel PIV Technique for Measurements in Multiphase Flows and Its Application to Two-Phase Bubbly Flows
,”
Exp. Fluids
,
33
(
6
), pp.
814
825
.10.1007/s00348-002-0500-1
22.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
567
603
.10.1146/annurev.fluid.31.1.567
23.
Prosperetti
,
A.
, and
Tryggvason
,
G.
,
2009
,
Computational Methods for Multiphase Flow
,
Cambridge Press
, Cambridge, UK.
24.
Elghobashi
,
S.
,
2019
, “
Direct Numerical Simulation of Turbulent Flows Laden With Droplets or Bubbles
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
217
244
.10.1146/annurev-fluid-010518-040401
25.
Bull
,
J. L.
,
Nelson
,
L. K.
,
Walsh
,
J. T.
,
Glucksberg
,
M. R.
,
SchüRch
,
S.
, and
Grotberg
,
J. B.
,
1999
, “
Surfactant-Spreading and Surface-Compression Disturbance on a Thin Viscous Film
,”
ASME J. Biomech. Eng.
,
121
(
1
), pp.
89
98
.10.1115/1.2798049
26.
Dussaud
,
A. D.
,
Matar
,
O. K.
, and
Troian
,
S. M.
,
2005
, “
Spreading Characteristics of an Insoluble Surfactant Film on a Thin Liquid Layer: Comparison Between Theory and Experiment
,”
J. Fluid Mech.
,
544
(
1
), pp.
23
51
.10.1017/S002211200500621X
27.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N.
,
2010
, “
A Conservative SPH Method for Surfactant Dynamics
,”
J. Comput. Phys.
,
229
(
5
), pp.
1909
1926
.10.1016/j.jcp.2009.11.015
28.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2019
, “
Coalescence of Surfactant-Laden Drops by Phase Field Method
,”
J. Comput. Phys.
,
376
, pp.
1292
1311
.10.1016/j.jcp.2018.10.021
29.
Xu
,
J.
,
Li
,
Z.
,
Lowengrub
,
J.
, and
Zhao
,
H.
,
2006
, “
A Level-Set Method for Interfacial Flows With Surfactant
,”
J. Comput. Phys.
,
212
(
2
), pp.
590
616
.10.1016/j.jcp.2005.07.016
30.
Muradoglu
,
M.
, and
Tryggvason
,
G.
,
2008
, “
A Front-Tracking Method for Computation of Interfacial Flows With Soluble Surfactants
,”
J. Comput. Phys.
,
227
(
4
), pp.
2238
2262
.10.1016/j.jcp.2007.10.003
31.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), pp.
2182
2189
.10.1063/1.1761178
32.
Mirjalili
,
S.
,
Jain
,
S.
, and
Dodd
,
M.
,
2017
, “
Interface-Capturing Methods for Two-Phase Flows: An Overview and Recent Developments
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
117
135
.
33.
Gorokhovski
,
M.
, and
Herrmann
,
M.
,
2008
, “
Modeling Primary Atomization
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
343
366
.10.1146/annurev.fluid.40.111406.102200
34.
Rogallo
,
R.
, and
Moin
,
P.
,
1984
, “
Numerical Simulation of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
99
137
.10.1146/annurev.fl.16.010184.000531
35.
Moin
,
P.
, and
Mahesh
,
K.
,
1998
, “
Direct Numerical Simulation: A Tool in Turbulence Research
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
539
578
.10.1146/annurev.fluid.30.1.539
36.
Thomas
,
S.
,
Esmaeeli
,
A.
, and
Tryggvason
,
G.
,
2010
, “
Multiscale Computations of Thin Films in Multiphase Flows
,”
Int. J. Multiphase Flow
,
36
(
1
), pp.
71
77
.10.1016/j.ijmultiphaseflow.2009.08.002
37.
Perumanath
,
S.
,
Borg
,
M.
,
Chubynsky
,
M.
,
Sprittles
,
J.
, and
Reese
,
J.
,
2019
, “
Droplet Coalescence is Initiated by Thermal Motion
,”
Phys. Rev. Lett.
,
122
(
10
), p.
104501
.10.1103/PhysRevLett.122.104501
38.
Soldati
,
A.
, and
Marchioli
,
C.
,
2009
, “
Physics and Modelling of Turbulent Particle Deposition and Entrainment: Review of a Systematic Study
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
827
839
.10.1016/j.ijmultiphaseflow.2009.02.016
39.
Roccon
,
A.
,
De Paoli
,
M.
,
Zonta
,
F.
, and
Soldati
,
A.
,
2017
, “
Viscosity-Modulated Breakup and Coalescence of Large Drops in Bounded Turbulence
,”
Phys. Rev. Fluids
,
2
(
8
), p.
083603
.10.1103/PhysRevFluids.2.083603
40.
Evrard
,
F.
,
Denner
,
F.
, and
van Wachem
,
B.
,
2019
, “
A Hybrid Eulerian-Lagrangian Approach for Simulating Liquid Sprays
,” ILASS–Europe, Paris, France, 2–4 September 2019.
41.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J.
,
2014
, “
LES of Turbulent Liquid Jet Primary Breakup in Turbulent Coaxial Air Flow
,”
Int. J. Multiphase Flow
,
60
, pp.
103
118
.10.1016/j.ijmultiphaseflow.2013.11.013
42.
Rekvig
,
L.
, and
Frenkel
,
D.
,
2007
, “
Molecular Simulations of Droplet Coalescence in Oil/Water/Surfactant Systems
,”
J. Chem. Phys.
,
127
(
13
), p.
134701
.10.1063/1.2780865
43.
Svanberg
,
M.
,
Ming
,
L.
,
Marković
,
N.
, and
Pettersson
,
J. B.-C.
,
1998
, “
Collision Dynamics of Large Water Clusters
,”
J. Chem. Phys.
,
108
(
14
), pp.
5888
5897
.10.1063/1.475999
44.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
45.
Voth
,
G. A.
, and
Soldati
,
A.
,
2017
, “
Anisotropic Particles in Turbulence
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
249
276
.10.1146/annurev-fluid-010816-060135
46.
Herrmann
,
M.
,
2010
, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME J. Eng. Gas Turbine Power
,
132
, p.
061506
.10.1115/1.4000148
47.
Ling
,
Y.
,
Zaleski
,
S.
, and
Scardovelli
,
R.
,
2015
, “
Multiscale Simulation of Atomization With Small Droplets Represented by a Lagrangian Point-Particle Model
,”
Int. J. Multiphase Flow
,
76
, pp.
122
143
.10.1016/j.ijmultiphaseflow.2015.07.002
48.
Herrmann
,
M.
,
2013
, “
A Sub-Grid Surface Dynamics Model for Sub-Filter Surface Tension Induced Interface Dynamics
,”
Comput. Fluids
,
87
, pp.
92
101
.10.1016/j.compfluid.2013.02.008
49.
Jofre
,
L.
,
Dodd
,
M. S.
,
Grau
,
J.
, and
Torres
,
R.
,
2020
, “
Near-Interface Flow Modeling in Large-Eddy Simulation of Two-Phase Turbulence
,”
Int. J. Multiphase Flow
,
132
, p.
103406
.10.1016/j.ijmultiphaseflow.2020.103406
50.
Tryggvason
,
G.
,
Dabiri
,
S.
,
Aboulhasanzadeh
,
B.
, and
Lu
,
J.
,
2013
, “
Multiscale Considerations in Direct Numerical Simulations of Multiphase Flows
,”
Phys. Fluids
,
25
(
3
), p.
031302
.10.1063/1.4793543
51.
Hirt
,
C.
,
Cook
,
J.
, and
Butler
,
T.
,
1970
, “
A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid With Free Surface
,”
J. Comput. Phys.
,
5
(
1
), pp.
103
124
.10.1016/0021-9991(70)90055-0
52.
Ryskin
,
G.
, and
Leal
,
L.
,
1984
, “
Numerical Solution of Free-Boundary Problems in Fluid Mechanics. Part 1: The Finite-Difference Technique
,”
J. Fluid Mech.
,
148
, pp.
1
17
.10.1017/S0022112084002214
53.
Ryskin
,
G.
, and
Leal
,
L.
,
1984
, “
Numerical Solution of Free-Boundary Problems in Fluid Mechanics. Part 2: Buoyancy-Driven Motion of a Gas Bubble Through a Quiescent Liquid
,”
J. Fluid Mech.
,
148
, pp.
19
35
.10.1017/S0022112084002226
54.
Zonta
,
F.
,
Soldati
,
A.
, and
Onorato
,
M.
,
2015
, “
Growth and Spectra of Gravity-Capillary Waves in Countercurrent Air/Water Turbulent Flow
,”
J. Fluid Mech.
,
777
, pp.
245
259
.10.1017/jfm.2015.356
55.
Glimm
,
J.
,
1982
, “
Tracking of Interfaces for Fluid Flow: Accurate Methods for Piecewise Smooth Problems
,”
Transonic, Shock, and Multidimensional Flows
,
Academic Press,
Cambridge, MA, pp.
259
287
.
56.
Glimm
,
J.
, and
Mcbryan
,
O. A.
,
1985
, “
A Computational Model for Interfaces
,”
Adv. Appl. Math.
,
6
(
4
), pp.
422
435
.10.1016/0196-8858(85)90019-3
57.
Udaykumar
,
H. S.
,
Kan
,
H. C.
,
Shyy
,
W.
, and
Tran-Son-Tay
,
R.
,
1997
, “
Multiphase Dynamics in Arbitrary Geometries on Fixed Cartesian Grids
,”
J. Comput. Phys.
,
137
(
2
), pp.
366
405
.10.1006/jcph.1997.5805
58.
Fedkiw
,
R.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
(
2
), pp.
457
492
.10.1006/jcph.1999.6236
59.
Lee
,
L.
, and
LeVeque
,
R. J.
,
2003
, “
An Immersed Interface Method for Incompressible Navier–Stokes Equations
,”
SIAM J. Sci. Comput.
,
25
(
3
), pp.
832
856
.10.1137/S1064827502414060
60.
Leal
,
G.
,
2007
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
,
Cambridge University Press
, Cambridge, UK.
61.
Popinet
,
S.
,
2018
, “
Numerical Models of Surface Tension
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
49
75
.10.1146/annurev-fluid-122316-045034
62.
Osher
,
S.
, and
Fedkiw
,
R.
,
2003
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer Verlag
, Berlin.
63.
Steinthorsson
,
E.
, and
Tryggvason
,
G.
,
1999
, “
A Front Tracking Scheme for High Density-Ratio Multi-Fluid Flows
,”
14th Computational Fluid Dynamics Conference
, Norfolk, VA, Nov. 1–5, p.
3326
.10.2514/6.1999-3326
64.
Tryggvason
,
G.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2011
,
Direct Numerical Simulations of Gas-Liquid Multiphase Flows
,
Cambridge University Press
, Cambridge, UK.
65.
Dong
,
S.
, and
Shen
,
J.
,
2012
, “
A Time-Stepping Scheme Involving Constant Coefficient Matrices for Phase-Field Simulations of Two-Phase Incompressible Flows With Large Density Ratios
,”
J. Comput. Phys.
,
231
(
17
), pp.
5788
5804
.10.1016/j.jcp.2012.04.041
66.
Fuster
,
D.
,
2013
, “
An Energy Preserving Formulation for the Simulation of Multiphase Turbulent Flows
,”
J. Comput. Phys.
,
235
, pp.
114
128
.10.1016/j.jcp.2012.10.029
67.
Dodd
,
M. S.
, and
Ferrante
,
A.
,
2014
, “
A Fast Pressure-Correction Method for Incompressible Two-Fluid Flows
,”
J. Comput. Phys.
,
273
, pp.
416
434
.10.1016/j.jcp.2014.05.024
68.
Wang
,
Z.
,
Dong
,
S.
,
Triantafyllou
,
M.
,
Constantinides
,
Y.
, and
Karniadakis
,
G.
,
2019
, “
A Stabilized Phase-Field Method for Two-Phase Flow at High Reynolds Number and Large Density/Viscosity Ratio
,”
J. Comput. Phys.
,
397
, p.
108832
.10.1016/j.jcp.2019.07.031
69.
Brackbill
,
J.
,
Kothe
,
D.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
70.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
71.
Kim
,
J.
,
2005
, “
A Continuous Surface Tension Force Formulation for Diffuse-Interface Models
,”
J. Comput. Phys.
,
204
(
2
), pp.
784
804
.10.1016/j.jcp.2004.10.032
72.
Kang
,
I.
, and
Leal
,
L.
,
1987
, “
Numerical Solution of Axisymmetric, Unsteady Free-Boundary Problems at Finite Reynolds Number. I. Finite-Difference Scheme and Its Application to the Deformation of a Bubble in a Uniaxial Straining Flow
,”
Phys. Fluids
,
30
(
7
), pp.
1929
1940
.10.1063/1.866207
73.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
74.
Sussman
,
M.
,
Smith
,
K. M.
,
Hussaini
,
M. Y.
,
Ohta
,
M.
, and
Zhi-Wei
,
R.
,
2007
, “
A Sharp Interface Method for Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
469
505
.10.1016/j.jcp.2006.06.020
75.
Popinet
,
S.
, and
Zaleski
,
S.
,
1999
, “
A Front-Tracking Algorithm for Accurate Representation of Surface Tension
,”
Int. J. Numer. Meth. Flow
,
30
(
6
), pp.
775
793
.10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.CO;2-#
76.
Hong
,
J. M.
,
Shinar
,
T.
,
Kang
,
M.
, and
Fedkiw
,
R.
,
2007
, “
On Boundary Condition Capturing for Multiphase Interfaces
,”
J. Sci. Comput.
,
31
(
1–2
), pp.
99
125
.10.1007/s10915-006-9120-x
77.
Desjardins
,
O.
,
Moureau
,
V.
, and
Pitsch
,
H.
,
2008
, “
An Accurate Conservative Level Set/Ghost Fluid Method for Simulating Turbulent Atomization
,”
J. Comput. Phys.
,
227
(
18
), pp.
8395
8416
.10.1016/j.jcp.2008.05.027
78.
Tanguy
,
S.
,
Ménard
,
T.
, and
Berlemont
,
A.
,
2007
, “
A Level Set Method for Vaporizing Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
837
853
.10.1016/j.jcp.2006.07.003
79.
Tanguy
,
S.
,
Sagan
,
M.
,
Lalanne
,
B.
,
Couderc
,
F.
, and
Colin
,
C.
,
2014
, “
Benchmarks and Numerical Methods for the Simulation of Boiling Flows
,”
J. Comput. Phys.
,
264
, pp.
1
22
.10.1016/j.jcp.2014.01.014
80.
Villegas
,
L. R.
,
Alis
,
R.
,
Lepilliez
,
M.
, and
Tanguy
,
S.
,
2016
, “
A Ghost Fluid/Level Set Method for Boiling Flows and Liquid Evaporation: Application to the Leidenfrost Effect
,”
J. Comput. Phys.
,
316
, pp.
789
813
.10.1016/j.jcp.2016.04.031
81.
Gibou
,
F.
,
Chen
,
L.
,
Nguyen
,
D.
, and
Banerjee
,
S.
,
2007
, “
A Level Set Based Sharp Interface Method for the Multiphase Incompressible Navier–Stokes Equations With Phase Change
,”
J. Comput. Phys.
,
222
(
2
), pp.
536
555
.10.1016/j.jcp.2006.07.035
82.
Liu
,
T.
,
Khoo
,
B.
, and
Yeo
,
K.
,
2001
, “
The Simulation of Compressible Multi-Medium Flow. I. A New Methodology With Test Applications to 1D Gas-Gas and Gas-Water Cases
,”
Comput. Fluids
,
30
(
3
), pp.
291
314
.10.1016/S0045-7930(00)00022-0
83.
Liu
,
T.
,
Khoo
,
B.
, and
Yeo
,
K.
,
2001
, “
The Simulation of Compressible Multi-Medium Flow: II. Applications to 2D Underwater Shock Refraction
,”
Comput. Fluids
,
30
(
3
), pp.
315
337
.10.1016/S0045-7930(00)00021-9
84.
Liu
,
T. G.
,
Khoo
,
B. C.
, and
Yeo
,
K. S.
,
2003
, “
Ghost Fluid Method for Strong Shock Impacting on Material Interface
,”
J. Comput. Phys.
,
190
(
2
), pp.
651
681
.10.1016/S0021-9991(03)00301-2
85.
Ménard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
,
2007
, “
Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
510
524
.10.1016/j.ijmultiphaseflow.2006.11.001
86.
Ge
,
Z.
,
Loiseau
,
J. C.
,
Tammisola
,
O.
, and
Brandt
,
L.
,
2018
, “
An Efficient Mass-Preserving Interface-Correction Level Set/Ghost Fluid Method for Droplet Suspensions Under Depletion Forces
,”
J. Comput. Phys.
,
353
, pp.
435
459
.10.1016/j.jcp.2017.10.046
87.
Helgadóttir
,
Á.
,
Guittet
,
A.
, and
Gibou
,
F.
,
2018
, “
On Solving the Poisson Equation With Discontinuities on Irregular Interfaces: GFM and VIM
,”
Int. J. Differ. Equ.
,
2018
, pp.
1
8
.10.1155/2018/9216703
88.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.10.1016/0021-9991(92)90307-K
89.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
90.
Nobari
,
M.
, and
Tryggvason
,
G.
,
1996
, “
Numerical Simulations of Three-Dimensional Drop Collisions
,”
AIAA J.
,
34
(
4
), pp.
750
755
.10.2514/3.13136
91.
Lu
,
J.
, and
Tryggvason
,
G.
,
2018
, “
Direct Numerical Simulations of Multifluid Flows in a Vertical Channel Undergoing Topology Changes
,”
Phys. Rev. Fluids
,
3
(
8
), p.
084401
.10.1103/PhysRevFluids.3.084401
92.
Lu
,
J.
, and
Tryggvason
,
G.
,
2019
, “
Multifluid Flows in a Vertical Channel Undergoing Topology Changes: Effect of Void Fraction
,”
Phys. Rev. Fluids
,
4
(
8
), p.
084301
.10.1103/PhysRevFluids.4.084301
93.
Nobari
,
M.
,
Jan
,
Y.-J.
, and
Tryggvason
,
G.
,
1996
, “
Head-On Collision of Drops—A Numerical Investigation
,”
Phys. Fluids.
,
8
(
1
), pp.
29
42
.10.1063/1.868812
94.
Glimm
,
J.
,
Grove
,
J.
,
Li
,
X. L.
, and
Tan
,
D.
,
2000
, “
Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions
,”
SIAM J. Sci. Comput.
,
21
(
6
), pp.
2240
2256
.10.1137/S1064827598340500
95.
Shin
,
S.
, and
Juric
,
D.
,
2002
, “
Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking Without Connectivity
,”
J. Comput. Phys.
,
180
(
2
), pp.
427
470
.10.1006/jcph.2002.7086
96.
Bo
,
W.
,
Liu
,
X.
,
Glimm
,
J.
, and
Li
,
X.
,
2011
, “
A Robust Front Tracking Method: Verification and Application to Simulation of the Primary Breakup of a Liquid Jet
,”
SIAM J. Sci. Comput.
,
33
(
4
), pp.
1505
1524
.10.1137/10079135X
97.
Peskin
,
C.
,
1973
, “
Flow Patterns Around Heart Valves: A Digital Computer Method for Solving the Equations of Motion
,” Ph.D. thesis,
Yeshiva University
, New York.
98.
Iaccarino
,
G.
, and
Verzicco
,
R.
,
2003
, “
Immersed Boundary Technique for Turbulent Flow Simulations
,”
ASME Appl. Mech. Rev.
,
56
(
3
), pp.
231
347
.10.1115/1.1563627
99.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
100.
Sardina
,
G.
,
Schlatter
,
P.
,
Brandt
,
L.
,
Picano
,
F.
, and
Casciola
,
C. M.
,
2012
, “
Wall Accumulation and Spatial Localization in Particle-Laden Wall Flows
,”
J. Fluid Mech.
,
699
(
1
), pp.
50
78
.10.1017/jfm.2012.65
101.
Costa
,
P.
,
Boersma
,
B. J.
,
Westerweel
,
J.
, and
Breugem
,
W.-P.
,
2015
, “
Collision Model for Fully Resolved Simulations of Flows Laden With Finite-Size Particles
,”
Phys. Rev. E
,
92
(
5
), p.
053012
.10.1103/PhysRevE.92.053012
102.
Picano
,
F.
,
Breugem
,
W.-P.
, and
Brandt
,
L.
,
2015
, “
Turbulent Channel Flow of Dense Suspensions of Neutrally Buoyant Spheres
,”
J. Fluid Mech.
,
764
, pp.
463
487
.10.1017/jfm.2014.704
103.
Kim
,
Y.
, and
Peskin
,
C. S.
,
2008
, “
Numerical Study of Incompressible Fluid Dynamics With Nonuniform Density by the Immersed Boundary Method
,”
Phys. Fluids
,
20
(
6
), p.
062101
.10.1063/1.2931521
104.
Chong
,
K.
,
Li
,
Y.
,
Shen
,
N. C.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2020
, “
Convection-Dominated Dissolution for Single and Multiple Immersed Sessile Droplets
,”
J. Fluid Mech.
,
892
, p. A21.
105.
Spandan
,
V.
,
Meschini
,
V.
,
Ostilla-Mónico
,
R.
,
Detlef
,
L.
,
Querzoli
,
G.
,
de Tullio
,
M.
, and
Verzicco
,
R.
,
2017
, “
A Parallel Interaction Potential Approach Coupled With the Immersed Boundary Method for Fully Resolved Simulations of Deformable Interfaces and Membranes
,”
J. Comput. Phys.
,
348
, pp.
567
590
.10.1016/j.jcp.2017.07.036
106.
Spandan
,
V.
,
Detlef
,
L.
,
de Tullio
,
M.
, and
Verzicco
,
R.
,
2018
, “
A Fast Moving Least Squares Approximation With Adaptive Lagrangian Mesh Refinement for Large Scale Immersed Boundary Simulations
,”
J. Comput. Phys.
,
375
, pp.
228
239
.10.1016/j.jcp.2018.08.040
107.
Musong
,
S.
,
Feng
,
Z.-G.
,
Michaelides
,
E.
, and
Mao
,
S.
,
2016
, “
Application of a Three-Dimensional Immersed Boundary Method for Free Convection From Single Spheres and Aggregates
,”
J. Fluid Eng.
,
138
, pp.
1
10
.
108.
Peng
,
S.
,
Spandan
,
V.
,
Verzicco
,
R.
,
Detlef
,
L.
, and
Zhang
,
X.
,
2018
, “
Growth Dynamics of Microbubbles on Microcavity Arrays by Solvent Exchange: Experiments and Numerical Simulations
,”
J. Colloid. Interface Sci.
,
532
, pp.
103
111
.10.1016/j.jcis.2018.07.111
109.
Hirt
,
C.
,
Amsden
,
A.
, and
Cook
,
J.
,
1974
, “
An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds
,”
J. Comput. Phys.
,
14
(
3
), pp.
227
253
.10.1016/0021-9991(74)90051-5
110.
Hu
,
H.
,
Patankar
,
N.
, and
Zhu
,
M.
,
2001
, “
Direct Numerical Simulations of Fluid-Solid Systems Using the Arbitrary Lagrangian-Eulerian Technique
,”
J. Comput. Phys.
,
169
(
2
), pp.
427
462
.10.1006/jcph.2000.6592
111.
Yue
,
P.
,
Feng
,
J.
,
Bertelo
,
C.
, and
Hu
,
H.
,
2007
, “
An Arbitrary Lagrangian-Eulerian Method for Simulating Bubble Growth in Polymer Foaming
,”
J. Comput. Phys.
,
226
(
2
), pp.
2229
2249
.10.1016/j.jcp.2007.07.007
112.
Boscheri
,
W.
, and
Dumbser
,
M.
,
2014
, “
A Direct Arbitrary-Lagrangian-Eulerian ADER-WENO Finite Volume Scheme on Unstructured Tetrahedral Meshes for Conservative and Non-Conservative Hyperbolic Systems in 3D
,”
J. Comput. Phys.
,
275
, pp.
484
523
.10.1016/j.jcp.2014.06.059
113.
Anjos
,
G.
,
Mangiavacchi
,
N.
, and
Thome
,
J.
,
2020
, “
An ALE-FE Method for Two-Phase Flows With Dynamic Boundaries
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112820
.10.1016/j.cma.2020.112820
114.
Cheng
,
Z.
,
Li
,
J.
,
Loh
,
C.
, and
Luo
,
L.-S.
,
2020
, “
An Exactly Force-Balanced Boundary-Conforming Arbitrary-Lagrangian-Eulerian Method for Interfacial Dynamics
,”
J. Comput. Phys.
,
408
, p.
109237
.10.1016/j.jcp.2020.109237
115.
Yang
,
X.
, and
James
,
A.
,
2007
, “
An Arbitrary Lagrangian-Eulerian (ALE) Method for Interfacial Flows With Insoluble Surfactants
,”
FDMP
,
3
, pp.
65
96
.
116.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
117.
Rider
,
W.
, and
Kothe
,
D.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), pp.
112
152
.10.1006/jcph.1998.5906
118.
Xiao
,
F.
,
Honma
,
Y.
, and
Kono
,
T.
,
2005
, “
A Simple Algebraic Interface Capturing Scheme Using Hyperbolic Tangent Function
,”
Int. J. Numer. Methods Fluids
,
48
(
9
), pp.
1023
1040
.10.1002/fld.975
119.
Ashgriz
,
N.
, and
Poo
,
J.
,
1991
, “
FLAIR: Flux Line-Segment Model for Advection and Interface Reconstruction
,”
J. Comput. Phys.
,
93
(
2
), pp.
449
468
.10.1016/0021-9991(91)90194-P
120.
Noh
,
W.
, and
Woodward
,
P.
,
1976
, “
SLIC (Simple Line Interface Calculation)
,”
Proceedings of Fifth International Conference on Numerical Methods in Fluid Dynamics
, Vol.
59
, Twente University, Enschede, The Netherlands, June 28–July 2, pp.
330
340
.10.1007/3-540-08004-X_336
121.
Fuster
,
D.
,
Agbaglah
,
G.
,
Josserand
,
C.
,
Popinet
,
S.
, and
Zaleski
,
S.
,
2009
, “
Numerical Simulation of Droplets, Bubbles and Waves: State of the Art
,”
Fluid Dyn. Res.
,
41
(
6
), p.
065001
.10.1088/0169-5983/41/6/065001
122.
Osher
,
S.
, and
Sethian
,
J.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
123.
Osher
,
S.
, and
Sethian
,
J.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
, pp.
12
49
.
124.
Osher
,
S.
, and
Fedkiw
,
R.
,
2001
, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
,
169
(
2
), pp.
463
502
.10.1006/jcph.2000.6636
125.
Gibou
,
F.
,
Fedkiw
,
R.
, and
Osher
,
S.
,
2018
, “
A Review of Level-Set Methods and Some Recent Applications
,”
J. Comput. Phys.
,
353
, pp.
82
109
.10.1016/j.jcp.2017.10.006
126.
Shu
,
C.
, and
Osher
,
S.
,
1989
, “
Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes, II
,”
J. Comput. Phys.
,
83
(
1
), pp.
32
78
.10.1016/0021-9991(89)90222-2
127.
Sussman
,
M.
, and
Hussaini
,
M. Y.
,
2003
, “
A Discontinuous Spectral Element Method for the Level Set Equation
,”
J. Sci. Comput.
,
19
(
1/3
), pp.
479
500
.10.1023/A:1025328714359
128.
Chang
,
Y.
,
Hou
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1996
, “
Eulerian Capturing Methods Based on a Level Set Formulation for Incompressible Fluid Interfaces
,”
J. Comput. Phys.
,
124
(
2
), pp.
449
464
.10.1006/jcph.1996.0072
129.
Sethian
,
J.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
, Vol.
3
,
Cambridge University Press
, Cambridge, UK.
130.
Sussman
,
M.
, and
Fatemi
,
E.
,
1999
, “
An Efficient, Interface Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput.
,
20
(
4
), pp.
1165
1191
.10.1137/S1064827596298245
131.
Herrmann
,
M.
,
2008
, “
A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids
,”
J. Comput. Phys.
,
227
(
4
), pp.
2674
2706
.10.1016/j.jcp.2007.11.002
132.
Olsson
,
E.
, and
Kreiss
,
G.
,
2005
, “
A Conservative Level Set Method for Two Phase Flow
,”
J. Comput. Phys.
,
210
(
1
), pp.
225
246
.10.1016/j.jcp.2005.04.007
133.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
134.
Sussman
,
M.
,
2003
, “
A Second Order Coupled Level-Set and Volume of Fluid Method for Computing Growth and Collapse of Vapor Bubbles
,”
J. Comput. Phys.
,
187
(
1
), pp.
110
136
.10.1016/S0021-9991(03)00087-1
135.
Cahn
,
J.
, and
Hilliard
,
J.
,
1958
, “
Free Energy of a Nonuniform System—I: Interfacial Free Energy
,”
J. Chem. Phys.
,
28
(
2
), pp.
258
267
.10.1063/1.1744102
136.
Cahn
,
J.
, and
Hilliard
,
J.
,
1959
, “
Free Energy of a Nonuniform System—II: Thermodynamic Basis
,”
J. Chem. Phys.
,
30
(
5
), pp.
1121
1124
.10.1063/1.1730145
137.
Cahn
,
J.
, and
Hilliard
,
J.
,
1959
, “
Free Energy of a Nonuniform System—III: Nucleation in a Two-Component Incompressible Fluid
,”
J. Chem. Phys.
,
31
(
3
), pp.
688
699
.10.1063/1.1730447
138.
Jacqmin
,
D.
,
1999
, “
Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling
,”
J. Comput. Phys.
,
155
(
1
), pp.
96
127
.10.1006/jcph.1999.6332
139.
Jacqmin
,
D.
,
2000
, “
Contact-Line Dynamics of a Diffuse Fluid Interface
,”
J. Fluid Mech.
,
402
, pp.
57
88
.10.1017/S0022112099006874
140.
Badalassi
,
V.
,
Ceniceros
,
H.
, and
Banerjee
,
S.
,
2003
, “
Computation of Multiphase Systems With Phase Field Models
,”
J. Comput. Phys.
,
190
(
2
), pp.
371
397
.10.1016/S0021-9991(03)00280-8
141.
Kim
,
J.
, and
Lowengrub
,
J.
,
2005
, “
Phase Field Modeling and Simulation of Three-Phase Flows
,”
Interfaces Free Bound.
,
7
(
4
), p.
435
.10.1016/j.jcp.2016.05.016
142.
Ding
,
H.
,
Spelt
,
P.
, and
Shu
,
C.
,
2007
, “
Diffuse Interface Model for Incompressible Two-Phase Flows With Large Density Ratios
,”
J. Comput. Phys.
,
226
(
2
), pp.
2078
2095
.10.1016/j.jcp.2007.06.028
143.
Shen
,
J.
, and
Yang
,
X.
,
2010
, “
A Phase-Field Model and Its Numerical Approximation for Two-Phase Incompressible Flows With Different Densities and Viscosities
,”
SIAM J. Sci. Comput.
,
32
(
3
), pp.
1159
1179
.10.1137/09075860X
144.
Chen
,
L.
,
2002
, “
Phase-Field Models for Microstructure Evolution
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
113
140
.10.1146/annurev.matsci.32.112001.132041
145.
Magaletti
,
F.
,
Picano
,
F.
,
Chinappi
,
M.
,
Marino
,
L.
, and
Casciola
,
C.
,
2013
, “
The Sharp-Interface Limit of the Cahn–Hilliard/Navier–Stokes Model for Binary Fluids
,”
J. Fluid Mech.
,
714
, pp.
95
126
.10.1017/jfm.2012.461
146.
Yue
,
P.
,
Zhou
,
C.
, and
Feng
,
J.
,
2007
, “
Spontaneous Shrinkage of Drops and Mass Conservation in Phase-Field Simulations
,”
J. Comput. Phys.
,
223
(
1
), pp.
1
9
.10.1016/j.jcp.2006.11.020
147.
Li
,
Y.
,
Choi
,
J.
, and
Kim
,
J.
,
2016
, “
A Phase-Field Fluid Modeling and Computation With Interfacial Profile Correction Term
,”
Commun. Nonlinear Sci.
,
30
(
1–3
), pp.
84
100
.10.1016/j.cnsns.2015.06.012
148.
Zhang
,
Y.
, and
Ye
,
W.
,
2017
, “
A Flux-Corrected Phase-Field Method for Surface Diffusion
,”
Commun. Comput. Phys.
,
22
(
2
), pp.
422
440
.10.4208/cicp.OA-2016-0150
149.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2019
, “
Mass-Conservation-Improved Phase Field Methods for Turbulent Multiphase Flow Simulation
,”
Acta Mech.
,
230
(
2
), pp.
683
696
.10.1007/s00707-018-2304-2
150.
Lamorgese
,
A.
,
Mauri
,
R.
, and
Sagis
,
L.
,
2017
, “
Modeling Soft Interface Dominated Systems: A Comparison of Phase Field and Gibbs Dividing Surface Models
,”
Phys. Rep.
,
675
, pp.
1
54
.10.1016/j.physrep.2017.01.002
151.
Mirjalili
,
S.
,
Ivey
,
C.
, and
Mani
,
A.
,
2019
, “
Comparison Between the Diffuse Interface and Volume of Fluid Methods for Simulating Two-Phase Flows
,”
Int. J. Multiphase Flow
,
116
, pp.
221
238
.10.1016/j.ijmultiphaseflow.2019.04.019
152.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2019
, “
Breakage, Coalescence and Size Distribution of Surfactant-Laden Droplets in Turbulent Flow
,”
J. Fluid Mech.
,
881
, pp.
244
282
.10.1017/jfm.2019.772
153.
Mukherjee
,
S.
,
Safdari
,
A.
,
Shardt
,
O.
,
Kenjereš
,
S.
, and
Van den Akker
,
H.
,
2019
, “
Droplet–Turbulence Interactions and Quasi-Equilibrium Dynamics in Turbulent Emulsions
,”
J. Fluid Mech.
,
878
, pp.
221
276
.10.1017/jfm.2019.654
154.
Huang
,
K.
,
1963
,
Statistical Mechanics
,
Wiley
, Hoboken, NJ.
155.
Cercignani
,
C.
,
1969
,
Mathematical Methods in Kinetic Theory
,
Plenum Press
, New York.
156.
Liboff
,
R.
,
1969
,
Introduction to the Theory of Kinetic Equations
,
Wiley
, Hoboken, NJ.
157.
Chapman
,
S.
, and
Cowling
,
T.
,
1970
,
The Mathematical Theory of Non-Uniform Gases
,
Cambridge University Press
, Cambridge, UK.
158.
Koga
,
T.
,
1970
,
Introduction to Kinetic Theory Stochastic Processes in Gaseous Systems
,
Pergamon Press
, Oxford, UK.
159.
Harris
,
S.
,
1971
,
An Introduction to the Theory of the Boltzmann Equation
,
Rinehart and Winston
,
New York.
160.
He
,
X.
, and
Luo
,
L.-S.
,
1997
, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.10.1103/PhysRevE.56.6811
161.
Nourgaliev
,
R. R.
,
Dinh
,
T. N.
,
Theofanous
,
T. G.
, and
Joseph
,
D.
,
2003
, “
The Lattice Boltzmann Equation Method: Theoretical Interpretation, Numerics and Implications
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
117
169
.10.1016/S0301-9322(02)00108-8
162.
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
163.
Aidun
,
C.
, and
Clausen
,
J.
,
2010
, “
Lattice-Boltzmann Method for Complex Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
439
472
.10.1146/annurev-fluid-121108-145519
164.
Zhang
,
J.
,
2011
, “
Lattice Boltzmann Method for Microfluidics: Models and Applications
,”
Microfluid. Nanofluid.
,
10
(
1
), pp.
1
28
.10.1007/s10404-010-0624-1
165.
Li
,
Q.
,
Luo
,
K. H.
,
Kang
,
Q.
,
He
,
Y.
,
Chen
,
Q.
, and
Liu
,
Q.
,
2016
, “
Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer
,”
Prog. Energy Combust. Sci.
,
52
, pp.
62
105
.10.1016/j.pecs.2015.10.001
166.
Rothman
,
D.
, and
Keller
,
J.
,
1988
, “
Immiscible Cellular-Automaton Fluids
,”
J. Stat. Phys.
,
52
(
3–4
), pp.
1119
1127
.10.1007/BF01019743
167.
Gunstensen
,
A. K.
,
Rothman
,
D. H.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1991
, “
Lattice Boltzmann Model of Immiscible Fluids
,”
Phys. Rev. A
,
43
(
8
), pp.
4320
4327
.10.1103/PhysRevA.43.4320
168.
Grunau
,
D.
,
Chen
,
S.
, and
Eggert
,
K.
,
1993
, “
A Lattice Boltzmann Model for Multiphase Fluid Flows
,”
Phys. Fluids A
,
5
(
10
), pp.
2557
2562
.10.1063/1.858769
169.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
170.
Shan
,
X.
, and
Chen
,
H.
,
1994
, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
49
(
4
), pp.
2941
2948
.10.1103/PhysRevE.49.2941
171.
Shan
,
X.
, and
Doolen
,
G.
,
1995
, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Stat. Phys.
,
81
(
1–2
), pp.
379
393
.10.1007/BF02179985
172.
Orlandini
,
S.
,
Swift
,
M.
, and
Yeomans
,
J.
,
1995
, “
A Lattice Boltzmann Model for Binary-Fluid Mixtures
,”
Europhys. Lett.
,
32
(
6
), pp.
463
468
.10.1209/0295-5075/32/6/001
173.
Swift
,
M.
,
Orlandini
,
S.
,
Osborn
,
W.
, and
Yeomans
,
J.
,
1996
, “
Lattice Boltzmann Simulations of Liquid-Gas and Binary Fluid Systems
,”
Phys. Rev. E
,
54
(
5
), pp.
5041
5052
.10.1103/PhysRevE.54.5041
174.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.10.1006/jcph.1998.6057
175.
He
,
X.
,
Chen
,
S.
, and
Zhang
,
R.
,
1999
, “
A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability
,”
J. Comput. Phys.
,
152
(
2
), pp.
642
663
.10.1006/jcph.1999.6257
176.
He
,
X.
,
Zhang
,
R.
,
Chen
,
S.
, and
Doolen
,
G.
,
1999
, “
On the Three-Dimensional Rayleigh–Taylor Instability
,”
Phys. Fluids
,
11
(
5
), pp.
1143
1152
.10.1063/1.869984
177.
Zhang
,
R.
,
He
,
X.
,
Doolen
,
G.
, and
Chen
,
S.
,
2001
, “
Surface Tension Effects on Two-Dimensional Two-Phase Kelvin-Helmholtz Instabilities
,”
Adv. Water Resource
,
24
(
3–4
), pp.
461
478
.10.1016/S0309-1708(00)00067-1
178.
Chin
,
J.
,
Boek
,
E.
, and
Coveney
,
P.
,
2002
, “
Lattice Boltzmann Simulation of the Flow of Binary Immiscible Fluids With Different Viscosities Using the Shan-Chen Microscopic Interaction Model
,”
Philos. Trans. R. Soc. A
,
360
(
1792
), pp.
547
558
.10.1098/rsta.2001.0953
179.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2002
, “
Displacement of a Two-Dimensional Immiscible Droplet in a Channel
,”
Phys. Fluids
,
14
, pp.
203
214
.10.1063/1.1499125
180.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2004
, “
Immiscible Displacement in a Channel: Simulations of Fingering in Two Dimensions
,”
Adv. Water. Resource
,
27
(
1
), pp.
13
22
.10.1016/j.advwatres.2003.10.002
181.
Inamuro
,
T.
,
Ogata
,
T.
,
Tajima
,
S.
, and
Konishi
,
N.
,
2004
, “
A Lattice Boltzmann Method for Incompressible Two-Phase Flows With Large Density Differences
,”
J. Comput. Phys.
,
198
(
2
), pp.
628
644
.10.1016/j.jcp.2004.01.019
182.
Zheng
,
H.
,
Shu
,
C.
, and
Chew
,
Y.
,
2006
, “
A Lattice Boltzmann Model for Multiphase Flows With Large Density Ratio
,”
J. Comput. Phys.
,
218
(
1
), pp.
353
371
.10.1016/j.jcp.2006.02.015
183.
Lee
,
T.
, and
Lin
,
C.
,
2005
, “
A Stable Discretization of the Lattice Boltzmann Equation for Simulation of Incompressible Two-Phase Flows at High Density Ratio
,”
J. Comput. Phys.
,
206
(
1
), pp.
16
47
.10.1016/j.jcp.2004.12.001
184.
Levich
,
V. G.
, and
Seeger
,
R. J.
,
1963
, “
Physicochemical Hydrodynamics
,”
Am. J. Phys.
,
31
(
11
), pp.
892
892
.10.1119/1.1969158
185.
Manikantan
,
H.
, and
Squires
,
T. M.
,
2020
, “
Surfactant Dynamics: Hidden Variables Controlling Fluid Flows
,”
J. Fluid Mech.
,
892
(
P1
), pp.
1
115
.10.1017/jfm.2020.170
186.
Stone
,
H.
,
1990
, “
A Simple Derivation of the Time Dependent Convective Diffusion Equation for Surfactant Transport Along a Deforming Interface
,”
Phys. Fluids A
,
2
(
1
), pp.
111
114
.10.1063/1.857686
187.
Slattery
,
J.
,
Sagis
,
L.
, and
Oh
,
E.
,
2007
,
Interfacial Transport Phenomena
,
Springer Science & Business Media
, Berlin (DE).
188.
Lai
,
M.
,
Tseng
,
Y.
, and
Huang
,
H.
,
2008
, “
An Immersed Boundary Method for Interfacial Flows With Insoluble Surfactant
,”
J. Comput. Phys.
,
227
(
15
), pp.
7279
7293
.10.1016/j.jcp.2008.04.014
189.
Lai
,
M.
,
Tseng
,
Y.
, and
Huang
,
H.
,
2010
, “
Numerical Simulation of Moving Contact Lines With Surfactant by Immersed Boundary Method
,”
Commun. Comput. Phys.
,
8
(
4
), pp.
735
757
.10.4208/cicp.281009.120210a
190.
Lu
,
J.
,
Muradoglu
,
M.
, and
Tryggvason
,
G.
,
2017
, “
Effect of Insoluble Surfactant on Turbulent Bubbly Flows in Vertical Channels
,”
Int. J. Multiphase Flow
,
95
, pp.
135
143
.10.1016/j.ijmultiphaseflow.2017.05.003
191.
Piedfert
,
A.
,
Lalanne
,
B.
,
Masbernat
,
O.
, and
Risso
,
F.
,
2018
, “
Numerical Simulations of a Rising Drop With Shape Oscillations in the Presence of Surfactants
,”
Phys. Rev. Fluids
,
3
(
10
), p.
103605
.10.1103/PhysRevFluids.3.103605
192.
Renardy
,
Y.
,
Renardy
,
M.
, and
Cristini
,
V.
,
2002
, “
A New Volume-of-Fluid Formulation for Surfactants and Simulations of Drop Deformation Under Shear at a Low Viscosity Ratio
,”
Eur. J. Mech. B-Fluid
,
21
(
1
), pp.
49
59
.10.1016/S0997-7546(01)01159-1
193.
Xu
,
J.-J.
, and
Zhao
,
H.
,
2003
, “
An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface
,”
SIAM J. Sci. Comput.
,
19
(
1/3
), pp.
573
594
.10.1023/A:1025336916176
194.
James
,
A.
, and
Lowengrub
,
J.
,
2004
, “
A Surfactant-Conserving Volume-of-Fluid Method for Interfacial Flows With Insoluble Surfactant
,”
J. Comput. Phys.
,
201
(
2
), pp.
685
722
.10.1016/j.jcp.2004.06.013
195.
Ganesan
,
S.
, and
Tobiska
,
L.
,
2009
, “
A Coupled Arbitrary Lagrangian–Eulerian and Lagrangian Method for Computation of Free Surface Flows With Insoluble Surfactants
,”
J. Comput. Phys.
,
228
(
8
), pp.
2859
2873
.10.1016/j.jcp.2008.12.035
196.
Farhat
,
H.
,
Celiker
,
F.
,
Singh
,
T.
, and
Lee
,
J.
,
2011
, “
A Hybrid Lattice Boltzmann Model for Surfactant-Covered Droplets
,”
Soft Matter
,
7
(
5
), pp.
1968
1985
.10.1039/c0sm00569j
197.
Xu
,
J.-J.
,
Li
,
Z.
,
Lowengrub
,
J.
, and
Zhao
,
H.
,
2011
, “
Numerical Study of Surfactant-Laden Drop-Drop Interactions
,”
Commun. Comput. Phys.
,
10
(
2
), pp.
453
473
.10.4208/cicp.090310.020610a
198.
Xu
,
J.-J.
,
Yang
,
Y.
, and
Lowengrub
,
J.
,
2012
, “
A Level-Set Continuum Method for Two-Phase Flows With Insoluble Surfactant
,”
J. Comput. Phys.
,
231
(
17
), pp.
5897
5909
.10.1016/j.jcp.2012.05.014
199.
Xu
,
J.-J.
, and
Ren
,
W.
,
2014
, “
A Level-Set Method for Two-Phase Flows With Moving Contact Line and Insoluble Surfactant
,”
J. Comput. Phys.
,
263
, pp.
71
90
.10.1016/j.jcp.2014.01.012
200.
Liu
,
H.
,
Ba
,
Y.
,
Wu
,
L.
,
Li
,
Z.
,
Xi
,
G.
, and
Zhang
,
Y.
,
2018
, “
A Hybrid Lattice Boltzmann and Finite Difference Method for Droplet Dynamics With Insoluble Surfactants
,”
J. Fluid Mech.
,
837
, pp.
381
412
.10.1017/jfm.2017.859
201.
Zhang
,
J.
,
Eckmann
,
D.
, and
Ayyaswamy
,
P.
,
2006
, “
A Front Tracking Method for a Deformable Intravascular Bubble in a Tube With Soluble Surfactant Transport
,”
J. Comput. Phys.
,
214
(
1
), pp.
366
396
.10.1016/j.jcp.2005.09.016
202.
Muradoglu
,
M.
, and
Tryggvason
,
G.
,
2014
, “
Simulations of Soluble Surfactants in 3D Multiphase Flow
,”
J. Comput. Phys.
,
274
, pp.
737
757
.10.1016/j.jcp.2014.06.024
203.
Ahmed
,
Z.
,
Izbassarov
,
D.
,
Costa
,
P.
,
Muradoglu
,
M.
, and
Tammisola
,
O.
,
2020
, “
Turbulent Bubbly Channel Flows: Effects of Soluble Surfactant and Viscoelasticity
,”
Comp. Fluids
,
212
, p.
104717
.10.1016/j.compfluid.2020.104717
204.
Teigen
,
K.
,
Li
,
X.
,
Lowengrub
,
J.
,
Wang
,
F.
, and
Voigt
,
A.
,
2009
, “
A Diffuse-Interface Approach for Modeling Transport, Diffusion and Adsorption/Desorption of Material Quantities on a Deformable Interface
,”
Commun. Math. Sci.
,
7
(
4
), pp.
1009
1037
.10.4310/CMS.2009.v7.n4.a10
205.
Ganesan
,
S.
, and
Tobiska
,
L.
,
2012
, “
Arbitrary Lagrangian–Eulerian Finite-Element Method for Computation of Two-Phase Flows With Soluble Surfactants
,”
J. Comput. Phys.
,
231
(
9
), pp.
3685
3702
.10.1016/j.jcp.2012.01.018
206.
Porter
,
M. R.
,
1991
,
Handbook of Surfactants
,
Springer
,
New York
.
207.
Chang
,
C.
, and
Franses
,
E.
,
1995
, “
Adsorption Dynamics of Surfactants at the Air/Water Interface: A Critical Review of Mathematical Models, Data, and Mechanisms
,”
Colloids Surf. A
,
100
, pp.
1
45
.10.1016/0927-7757(94)03061-4
208.
López-Díaz
,
D.
,
García-Mateos
,
I.
, and
Velázquez
,
M. M.
,
2006
, “
Surface Properties of Mixed Monolayers of Sulfobetaines and Ionic Surfactants
,”
J. Colloid Interface Sci.
,
299
(
2
), pp.
858
866
.10.1016/j.jcis.2006.02.030
209.
Ju
,
H.
,
Jiang
,
Y.
,
Geng
,
T.
,
Wang
,
Y.
, and
Zhang
,
C.
,
2017
, “
Equilibrium and Dynamic Surface Tension of Quaternary Ammonium Salts With Different Hydrocarbon Chain Length of Counterions
,”
J. Mol. Liq.
,
225
, pp.
606
612
.10.1016/j.molliq.2016.11.084
210.
Komura
,
S.
, and
Kodama
,
H.
,
1997
, “
Two-Order-Parameter Model for an Oil-Water-Surfactant System
,”
Phys. Rev. E
,
55
(
2
), pp.
1722
1727
.10.1103/PhysRevE.55.1722
211.
Engblom
,
S.
,
Do-Quang
,
M.
,
Amberg
,
G.
, and
Tornberg
,
A.
,
2013
, “
On Diffuse Interface Modeling and Simulation of Surfactants in Two-Phase Fluid Flow
,”
Commun. Comput. Phys.
,
14
(
4
), pp.
879
915
.10.4208/cicp.120712.281212a
212.
Yun
,
A.
,
Li
,
Y.
, and
Kim
,
J.
,
2014
, “
A New Phase-Field Model for a Water-Oil-Surfactant System
,”
Appl. Math. Comput.
,
229
, pp.
422
432
.10.1016/j.amc.2013.12.054
213.
Laradji
,
M.
,
Guo
,
H.
,
Grant
,
M.
, and
Zuckermann
,
M.
,
1992
, “
The Effect of Surfactants on the Dynamics of Phase Separation
,”
J. Phys. Conden. Matter
,
4
(
32
), pp.
6715
6728
.10.1088/0953-8984/4/32/006
214.
Liu
,
H.
, and
Zhang
,
Y.
,
2010
, “
Phase-Field Modeling Droplet Dynamics With Soluble Surfactants
,”
J. Comput. Phys.
,
229
(
24
), pp.
9166
9187
.10.1016/j.jcp.2010.08.031
215.
Soligo
,
G.
,
Roccon
,
A.
, and
Soldati
,
A.
,
2020
, “
Effect of Surfactant-Laden Droplets on Turbulent Flow Topology
,”
Phys. Rev. Fluids
,
5
(
7
), p.
073606
.10.1103/PhysRevFluids.5.073606
216.
Murad
,
S.
, and
Law
,
C.
,
1999
, “
Molecular Simulation of Droplet Collision in the Presence of Ambient Gas
,”
Mol. Phys.
,
96
(
1
), pp.
81
85
.10.1080/00268979909482940
217.
MacKay
,
G.
, and
Mason
,
S.
,
1963
, “
The Gravity Approach and Coalescence of Fluid Drops at Liquid Interfaces
,”
Can. J. Chem. Eng.
,
41
(
5
), pp.
203
212
.10.1002/cjce.5450410504
218.
Gotaas
,
C.
,
Havelka
,
P.
,
Jakobsen
,
H.
,
Svendsen
,
H.
,
Hase
,
M.
,
Roth
,
N.
, and
Weigand
,
B.
,
2007
, “
Effect of Viscosity on Droplet-Droplet Collision Outcome: Experimental Study and Numerical Comparison
,”
Phys. Fluids
,
19
(
10
), p.
102106
.10.1063/1.2781603
219.
Chen
,
N.
,
Kuhl
,
T.
,
Tadmor
,
R.
,
Lin
,
Q.
, and
Israelachvili
,
J.
,
2004
, “
Large Deformations During the Coalescence of Fluid Interfaces
,”
Phys. Rev. Lett.
,
92
(
2
), p.
024501
.10.1103/PhysRevLett.92.024501
220.
Aarts
,
D.
,
Schmidt
,
M.
, and
Lekkerkerker
,
H.
,
2004
, “
Direct Visual Observation of Thermal Capillary Waves
,”
Sci.
,
304
(
5672
), pp.
847
850
.10.1126/science.1097116
221.
Aarts
,
D.
,
Lekkerkerker
,
H. N.
,
Guo
,
H.
,
Wegdam
,
C.
, and
Bonn
,
D.
,
2005
, “
Hydrodynamics of Droplet Coalescence
,”
Phys. Rev. Lett.
,
95
(
16
), p.
164503
.10.1103/PhysRevLett.95.164503
222.
Zdravkov
,
A.
,
Peters
,
G.
, and
Meijer
,
H.
,
2006
, “
Film Drainage and Interfacial Instabilities in Polymeric Systems With Diffuse Interfaces
,”
J. Colloid Interface Sci.
,
296
(
1
), pp.
86
94
.10.1016/j.jcis.2005.08.062
223.
Dodd
,
M.
, and
Ferrante
,
A.
,
2016
, “
On the Interaction of Taylor Length Scale Size Droplets and Isotropic Turbulence
,”
J. Fluid Mech.
,
806
, pp.
356
412
.10.1017/jfm.2016.550
224.
Rosti
,
M.
,
De Vita
,
F.
, and
Brandt
,
L.
,
2019
, “
Numerical Simulations of Emulsions in Shear Flows
,”
Acta Mech.
,
230
(
2
), pp.
667
682
.10.1007/s00707-018-2265-5
225.
Rosti
,
M.
,
Ge
,
Z.
,
Jain
,
S.
,
Dodd
,
M.
, and
Brandt
,
L.
,
2019
, “
Droplets in Homogeneous Shear Turbulence
,”
J. Fluid Mech.
,
876
, pp.
962
984
.10.1017/jfm.2019.581
226.
Ashgriz
,
N.
, and
Poo
,
J.
,
1990
, “
Coalescence and Separation in Binary Collisions of Liquid Drops
,”
J. Fluid Mech.
,
221
, pp.
183
204
.10.1017/S0022112090003536
227.
Soldati
,
A.
, and
Andreussi
,
P.
,
1996
, “
The Influence of Coalescence on Droplet Transfer in Vertical Annular Flow
,”
Chem. Eng. Sci.
,
51
(
3
), pp.
353
363
.10.1016/0009-2509(95)00236-7
228.
Tryggvason
,
G.
,
Thomas
,
S.
,
Lu
,
J.
, and
Aboulhasanzadeh
,
B.
,
2010
, “
Multiscale Issues in DNS of Multiphase Flows
,”
Acta Math. Sci.
,
30
(
2
), pp.
551
562
.10.1016/S0252-9602(10)60062-8
229.
Charles
,
G.
, and
Mason
,
S.
,
1960
, “
The Coalescence of Liquid Drops With Flat Liquid/Liquid Interfaces
,”
J. Colloid Sci.
,
15
(
3
), pp.
236
267
.10.1016/0095-8522(60)90026-X
230.
Allan
,
R.
,
Charles
,
G.
, and
Mason
,
S.
,
1961
, “
The Approach of Gas Bubbles to a Gas/Liquid Interface
,”
J. Colloid Sci.
,
16
(
2
), pp.
150
165
.10.1016/0095-8522(61)90014-9
231.
Kwakkel
,
M.
,
Breugem
,
W.-P.
, and
Boersma
,
B.
,
2013
, “
Extension of a CLSVOF Method for Droplet-Laden Flows With a Coalescence/Breakup Model
,”
J. Comput. Phys.
,
253
, pp.
166
188
.10.1016/j.jcp.2013.07.005
232.
Hahn
,
P.-S.
, and
Slattery
,
J. C.
,
1985
, “
Effects of Surface Viscosities on the Stability of a Draining Plane Parallel Liquid Film as a Small Bubble Approaches a Liquid-Gas Interface
,”
AIChe J.
,
31
(
6
), pp.
950
956
.10.1002/aic.690310611
233.
Liu
,
M.
, and
Bothe
,
D.
,
2019
, “
Toward the Predictive Simulation of Bouncing Versus Coalescence in Binary Droplet Collisions
,”
Acta Mech.
,
230
(
2
), pp.
623
644
.10.1007/s00707-018-2290-4
234.
Zhang
,
P.
, and
Law
,
C. K.
,
2011
, “
An Analysis of Head-on Droplet Collision With Large Deformation in Gaseous Medium
,”
Phys. Fluids
,
23
(
4
), p.
042102
.10.1063/1.3580754
235.
De Vita
,
F.
,
Rosti
,
M.
,
Caserta
,
S.
, and
Brandt
,
L.
,
2019
, “
On the Effect of Coalescence on the Rheology of Emulsions
,”
J. Fluid Mech.
,
880
, pp.
969
991
.10.1017/jfm.2019.722
236.
Montessori
,
A.
,
Lauricella
,
M.
,
Tirelli
,
N.
, and
Succi
,
S.
,
2019
, “
Mesoscale Modelling of Near-Contact Interactions for Complex Flowing Interfaces
,”
J. Fluid Mech.
,
872
, pp.
327
347
.10.1017/jfm.2019.372
237.
Talley
,
M.
,
Zimmer
,
M.
, and
Bolotnov
,
I.
,
2017
, “
Coalescence Prevention Algorithm for Level-Set Method
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081301
.10.1115/1.4036246
238.
O'Rourke
,
P. J.
,
1981
, “
Collective Drop Effects on Vaporizing Liquid Sprays
,” Ph.D. thesis,
Princeton University
, Princeton, NJ.
239.
Ko
,
G. H.
,
Ryou
,
H. S.
,
Hur
,
N. K.
,
Ko
,
S. W.
, and
Youn
,
M. O.
,
2007
, “
Numerical Study on Bouncing and Separation Collision Between Two Droplets Considering the Collision-Induced Breakup
,”
J. Mech. Sci. Technol.
,
21
(
4
), pp.
585
592
.10.1007/BF03026962
240.
Brazier-Smith
,
P. R.
,
Jennings
,
S. G.
, and
Latham
,
J.
,
1972
, “
The Interaction of Falling Water Drops: Coalescence
,”
Proc. R. Soc. Lond. A
,
326
, pp.
393
408
.10.1098/rspa.1972.0016
241.
Notz
,
P.
, and
Basaran
,
O.
,
2004
, “
Dynamics and Breakup of a Contracting Liquid Filament
,”
J. Fluid Mech.
,
512
, pp.
223
256
.10.1017/S0022112004009759
242.
Anthony
,
C. R.
,
Kamat
,
P. M.
,
Harris
,
M. T.
, and
Basaran
,
O. A.
,
2019
, “
Dynamics of Contracting Filaments
,”
Phys. Rev. Fluids
,
4
(
9
), p.
093601
.10.1103/PhysRevFluids.4.093601
243.
Eggers
,
J.
,
1995
, “
Theory of Drop Formation
,”
Phys. Fluids
,
7
(
5
), pp.
941
953
.10.1063/1.868570
244.
Eggers
,
J.
,
1997
, “
Nonlinear Dynamics and Breakup of Free-Surface Flows
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
865
930
.10.1103/RevModPhys.69.865
245.
Herrmann
,
M.
,
2011
, “
On Simulating Primary Atomization Using the Refined Level Set Grid Method
,”
Atom. Spray
,
21
(
4
), pp.
283
301
.10.1615/AtomizSpr.2011002760
246.
Kim
,
D.
,
Desjardins
,
O.
,
Herrmann
,
M.
, and
Moin
,
P.
,
2006
, “
Toward Two-Phase Simulation of the Primary Breakup of a Round Liquid Jet by a Coaxial Flow of Gas
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
185
195
.http://multiphase.asu.edu/paper/ctr_2006b.pdf
247.
Tomar
,
G.
,
Fuster
,
D.
,
Zaleski
,
S.
, and
Popinet
,
S.
,
2010
, “
Multiscale Simulations of Primary Atomization
,”
Comput. Fluids
,
39
(
10
), pp.
1864
1864
.10.1016/j.compfluid.2010.06.018
248.
Apte
,
S.
,
Gorokhovski
,
M.
, and
Moin
,
P.
,
2003
, “
LES of Atomizing Spray With Stochastic Modeling of Secondary Breakup
,”
Int. J. Multiphase Flow
,
29
(
9
), pp.
1503
1522
.10.1016/S0301-9322(03)00111-3
249.
Herrmann
,
M.
,
2003
, “
Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
185
196
.
250.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
2005
,
Bubbles, Drops, and Particles
,
Courier Corporation
, Chelmsford, MA.
251.
Maffettone
,
P.
, and
Minale
,
M.
,
1998
, “
Equation of Change for Ellipsoidal Drops in Viscous Flow
,”
J. Non-Newton. Fluid Mech.
,
78
(
2–3
), pp.
227
241
.10.1016/S0377-0257(98)00065-2
252.
Cristini
,
V.
,
Bławzdziewicz
,
J.
,
Loewenberg
,
M.
, and
Collins
,
L. R.
,
2003
, “
Breakup in Stochastic Stokes Flows: Sub-Kolmogorov Drops in Isotropic Turbulence
,”
J. Fluid Mech.
,
492
, pp.
231
250
.10.1017/S0022112003005561
253.
Biferale
,
L.
,
Meneveau
,
C.
, and
Verzicco
,
R.
,
2014
, “
Deformation Statistics of Sub-Kolmogorov-Scale Ellipsoidal Neutrally Buoyant Drops in Isotropic Turbulence
,”
J. Fluid Mech.
,
754
, pp.
184
207
.10.1017/jfm.2014.366
254.
Spandan
,
V.
,
Lohse
,
D.
, and
Verzicco
,
R.
,
2016
, “
Deformation and Orientation Statistics of Neutrally Buoyant Sub-Kolmogorov Ellipsoidal Droplets in Turbulent Taylor–Couette Flow
,”
J. Fluid Mech.
,
809
, pp.
480
501
.10.1017/jfm.2016.694
255.
Spandan
,
V.
,
Verzicco
,
R.
, and
Lohse
,
D.
,
2017
, “
Deformable Ellipsoidal Bubbles in Taylor–Couette Flow With Enhanced Euler-Lagrangian Tracking
,”
Phys. Rev. Fluids
,
2
(
10
), p.
104304
.10.1103/PhysRevFluids.2.104304
256.
Rosen
,
M.
, and
Kunjappu
,
J.
,
2012
,
Surfactants and Interfacial Phenomena
,
Wiley
, Hoboken, NJ.
257.
Hinze
,
J.
,
1955
, “
Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes
,”
AIChE J.
,
1
(
3
), pp.
289
295
.10.1002/aic.690010303
258.
Masuk
,
A.
,
Salibindla
,
A.
, and
Ni
,
R.
,
2021
, “
Simultaneous Measurements of Deforming Hinze-Scale Bubbles With Surrounding Turbulence
,”
J. Fluid Mech.
,
910
, p.
A21
.10.1017/jfm.2020.933
259.
Lycett-Brown
,
D.
,
Luo
,
K.
,
Liu
,
R.
, and
Lv
,
P.
,
2014
, “
Binary Droplet Collision Simulations by a Multiphase Cascaded Lattice Boltzmann Method
,”
Phys. Fluids
,
26
(
2
), p.
023303
.10.1063/1.4866146
260.
Qian
,
J.
, and
Law
,
C. K.
,
1997
, “
Regimes of Coalescence and Separation in Droplet Collision
,”
J. Fluid Mech.
,
331
, pp.
59
80
.10.1017/S0022112096003722
261.
Rajkotwala
,
A. H.
,
Mirsandi
,
H.
,
Peters
,
E. A. J. F.
,
Baltussen
,
M. W.
,
Van der Geld
,
C. W. M.
,
Kuerten
,
J. G. M.
, and
Kuipers
,
J. A. M.
,
2018
, “
Extension of Local Front Reconstruction Method With Controlled Coalescence Model
,”
Phys. Fluids
,
30
(
2
), p.
022102
.10.1063/1.5008371
262.
Jiang
,
Y. J.
,
Umemura
,
A.
, and
Law
,
C. K.
,
1992
, “
An Experimental Investigation on the Collision Behaviour of Hydrocarbon Droplets
,”
J. Fluid Mech.
,
234
(
1
), pp.
171
190
.10.1017/S0022112092000740
263.
Sommerfeld
,
M.
, and
Kuschel
,
M.
,
2016
, “
Modelling Droplet Collision Outcomes for Different Substances and Viscosities
,”
Exp. Fluids
,
57
(
12
), p.
187
.10.1007/s00348-016-2249-y
264.
Finotello
,
G.
,
Padding
,
J.
,
Deen
,
N.
,
Jongsma
,
A.
,
Innings
,
F.
, and
Kuipers
,
J.
,
2017
, “
Effect of Viscosity on Droplet-Droplet Collisional Interaction
,”
Phys. Fluids
,
29
(
6
), p.
067102
.10.1063/1.4984081
265.
Finotello
,
G.
,
Kooiman
,
R.
,
Padding
,
J.
,
Buist
,
K.
,
Jongsma
,
A.
,
Innings
,
F.
, and
Kuipers
,
J.
,
2018
, “
The Dynamics of Milk Droplet–Droplet Collisions
,”
Exp. Fluids
,
59
(
1
), p.
17
.10.1007/s00348-017-2471-2
266.
Al-Dirawi
,
K.
, and
Bayly
,
A.
,
2019
, “
A New Model for the Bouncing Regime Boundary in Binary Droplet Collisions
,”
Phys. Fluids
,
31
(
2
), p.
027105
.10.1063/1.5085762
267.
Pan
,
K.
,
Law
,
C.
, and
Zhou
,
B.
,
2008
, “
Experimental and Mechanistic Description of Merging and Bouncing in Head-on Binary Droplet Collision
,”
J. Appl. Phys.
,
103
(
6
), p.
064901
.10.1063/1.2841055
268.
Sussmann
,
M.
,
1994
, “
A Level Set for Computing Solutions to Incompressible Two-Phase Flow
,” Ph.D. thesis,
University of California
, Los Angeles, CA.
269.
Rajkotwala
,
A. H.
,
Gelissen
,
E. J.
,
Peters
,
E. A. J. F.
,
Baltussen
,
M. W.
,
van der Geld
,
C. W. M.
,
Kuerten
,
J. G. M.
, and
Kuipers
,
J. A. M.
,
2020
, “
Comparison of the Local Front Reconstruction Method With a Diffuse Interface Model for the Modeling of Droplet Collisions
,”
Chem. Eng. Sci.
,
7
, p.
100066
.10.1016/j.cesx.2020.100066
270.
Brown
,
D.
, and
Pitt
,
K.
,
1972
, “
Drop Size Distribution of Stirred Non-Coalescing Liquid-Liquid System
,”
Chem. Eng. Sci.
,
27
(
3
), pp.
577
583
.10.1016/0009-2509(72)87013-1
271.
Chen
,
H.
, and
Middleman
,
S.
,
1967
, “
Drop Size Distribution in Agitated Liquid-Liquid Systems
,”
AIChE J.
,
13
(
5
), pp.
989
995
.10.1002/aic.690130529
272.
Perlekar
,
P.
,
Biferale
,
L.
,
Sbragaglia
,
M.
,
Srivastava
,
S.
, and
Toschi
,
F.
,
2012
, “
Droplet Size Distribution in Homogeneous Isotropic Turbulence
,”
Phys. Fluids
,
24
(
6
), pp.
065101
10
.10.1063/1.4719144
273.
Chatzi
,
E.
, and
Kiparissides
,
C.
,
1994
, “
Drop Size Distributions in High Holdup Fraction Dispersion Systems: Effect of the Degree of Hydrolysis of PVA Stabilizer
,”
Chem. Eng. Sci.
,
49
(
24
), pp.
5039
5052
.10.1016/0009-2509(94)00359-9
274.
Lovick
,
J.
,
Mouza
,
A.
,
Paras
,
S.
,
Lye
,
G.
, and
Angeli
,
P.
,
2005
, “
Drop Size Distribution in Highly Concentrated Liquid-Liquid Dispersions Using a Light Back Scattering Method
,”
J. Chem. Technol. Biotechnol.
,
80
(
5
), pp.
545
552
.10.1002/jctb.1205
275.
Karabelas
,
A.
,
1978
, “
Droplet Size Spectra Generated in Turbulent Pipe Flow of Dilute Liquid/Liquid Dispersions
,”
AIChE J.
,
24
(
2
), pp.
170
180
.10.1002/aic.690240203
276.
Brown
,
W.
, and
Wohletz
,
K.
,
1995
, “
Derivation of the Weibull Distribution Based on Physical Principles and Its Connection to the Rosin-Rammler and Lognormal Distributions
,”
J. Appl. Phys.
,
78
(
4
), pp.
2758
2763
.10.1063/1.360073
277.
Mugele
,
R.
, and
Evans
,
H.
,
1951
, “
Droplet Size Distribution in Sprays
,”
Ind. Eng. Chem. Res.
,
43
(
6
), pp.
1317
1324
.10.1021/ie50498a023
278.
Deane
,
G.
, and
Stokes
,
M.
,
2002
, “
Scale Dependence of Bubble Creation Mechanisms in Breaking Waves
,”
Nature
,
418
(
6900
), pp.
839
844
.10.1038/nature00967
279.
Deike
,
L.
,
Melville
,
W.
, and
Popinet
,
S.
,
2016
, “
Air Entrainment and Bubble Statistics in Breaking Waves
,”
J. Fluid Mech.
,
801
, pp.
91
129
.10.1017/jfm.2016.372
280.
Garrett
,
C.
,
Li
,
M.
, and
Farmer
,
D.
,
2000
, “
The Connection Between Bubble Size Spectra and Energy Dissipation Rates in the Upper Ocean
,”
J. Phys. Oceanogr.
,
30
(
9
), pp.
2163
2171
.10.1175/1520-0485(2000)030<2163:TCBBSS>2.0.CO;2
281.
Skartlien
,
R.
,
Sollum
,
E.
, and
Schumann
,
H.
,
2013
, “
Droplet Size Distributions in Turbulent Emulsions: Breakup Criteria and Surfactant Effects From Direct Numerical Simulations
,”
J. Chem. Phys.
,
139
(
17
), p. 174901.10.1063/1.4827025
282.
Wang
,
Z.
,
Yang
,
J.
, and
Stern
,
F.
,
2016
, “
High-Fidelity Simulations of Bubble, Droplet and Spray Formation in Breaking Waves
,”
J. Fluid Mech.
,
792
, pp.
307
327
.10.1017/jfm.2016.87
283.
Chan
,
W. H. R.
,
Johnson
,
P.
, and
Moin
,
P.
,
2021
, “
The Turbulent Bubble Break-Up Cascade. Part 1. Theoretical Developments
,”
J. Fluid Mech.
, 912, p. A42.10.1017/jfm.2020.1083
284.
Blenkinsopp
,
C. E.
, and
Chaplin
,
J. R.
,
2010
, “
Bubble Size Measurements in Breaking Waves Using Optical Fiber Phase Detection Probes
,”
IEEE J. Ocean. Eng.
,
35
(
2
), pp.
388
401
.10.1109/JOE.2010.2044940
285.
Cartmill
,
J. W.
, and
Yang
,
S. M.
,
1993
, “
Bubble Size Distribution Under Saltwater and Freshwater Breaking Waves
,”
Dyn. Atmos. Oceans
,
20
(
1–2
), pp.
25
31
.10.1016/0377-0265(93)90046-A
286.
Chan
,
W. H. R.
,
Johnson
,
P.
,
Moin
,
P.
, and
Urzay
,
J.
,
2021
, “
The Turbulent Bubble Break-Up Cascade. Part 2. Numerical Simulations of Breaking Waves
,”
J. Fluid Mech.
, 912, p. A43.10.1017/jfm.2020.1084
287.
Rojas
,
G.
, and
Loewen
,
M. R.
,
2007
, “
Fiber-Optic Probe Measurements of Void Fraction and Bubble Size Distributions Beneath Breaking Waves
,”
Exp. Fluids
,
43
(
6
), pp.
896
906
.10.1007/s00348-007-0356-5
288.
Loewen
,
M. R.
,
O'Dor
,
M. A.
, and
Skafel
,
M. G.
,
1996
, “
Bubbles Entrained by Mechanically Generated Breaking Waves
,”
J. Geophys. Res.
,
101
(
C9
), pp.
20759
20769
.10.1029/96JC01919
289.
Chan
,
W.
,
Dodd
,
M.
,
Johnson
,
P.
,
Urzay
,
J.
, and
Moin
,
P.
,
2018
, “
Formation and Dynamics of Bubbles in Breaking Waves: Part II—The Evolution of the Bubble Size Distribution and Breakup/Coalescence Statistics
,”
Annu. Res. Briefs
, pp.
21
34
.
290.
Callaghan
,
A. H.
,
Stokes
,
M. D.
, and
Deane
,
G. B.
,
2014
, “
The Effect of Water Temperature on Air Entrainment, Bubble Plumes, and Surface Foam in a Laboratory Breaking-Wave Analog
,”
J. Geophys. Res. Oceans
,
119
(
11
), pp.
7463
7482
.10.1002/2014JC010351
You do not currently have access to this content.