Abstract

A sliding droplet over the silicon oil film is examined and the dynamics of droplet motion are explored. The solution crystallized wafer surfaces are silicon oil impregnated and the uniform thickness oil film is realized. A recording facility operating at high-speed and the tracker program are used to monitor and evaluate the droplet dynamics during droplet sliding. The sliding behavior and flow generated in the droplet fluid are predicted by adopting the experimental terms. Findings revealed that the crystallized surface possesses the texture composing of spherules and fibrils, which give rise to 132 ± 4 deg contact angle and 38 ± 4 deg hysteresis. Oil impregnation on the crystalized surface improves the optical transmittance by three times for 250–500 nm wavelength range and almost 1.5 times after 500–850 nm wavelengths of the optical spectrum. The oil rim and ridges are developed in sliding water droplet vicinity while influencing droplet motion; however, this influence is estimated as almost 12% of droplet gravitational energy change during sliding. A circulatory flow is developed inside the droplet fluid and the maximum velocity in the droplet fluid changes as the droplet location changes on the oil surface during its sliding.

References

1.
Rifai
,
A.
,
Abu-Dheir
,
N.
,
Khaled
,
M.
,
Al-Aqeeli
,
N.
, and
Yilbas
,
B. S.
,
2017
, “
Characteristics of Oil Impregnated Hydrophobic Glass Surfaces in Relation to Self-Cleaning of Environmental Dust Particles
,”
Sol. Energy Mater. Sol. Cells
,
171
, pp.
8
15
.10.1016/j.solmat.2017.06.017
2.
Ma
,
Z.
,
Zhang
,
C.
,
Liu
,
S.
, and
Zhu
,
W.
,
2009
, “
Study of Water Lubrication in Sliding Point Contact Friction Pairs With Hydrophobic Surfaces
,”
Advanced Tribology
,
Springer
, Berlin, pp.
157
158
.
3.
Cui
,
P.-F.
,
Zhuang
,
W.-R.
,
Hu
,
X.
,
Xing
,
L.
,
Yu
,
R.-Y.
,
Qiao
,
J.-B.
,
He
,
Y.-J.
,
Li
,
F.
,
Ling
,
D.
, and
Jiang
,
H.-L.
,
2018
, “
A New Strategy for Hydrophobic Drug Delivery Using a Hydrophilic Polymer Equipped With Stacking Units
,”
Chem. Commun.
,
54
(
59
), pp.
8218
8221
.10.1039/C8CC04363A
4.
Yilbas
,
B. S.
,
Ali
,
H.
,
Al‐Aqeeli
,
N.
,
Khaled
,
M.
,
Abu‐Dheir
,
N.
, and
Varanasi
,
K. K.
,
2016
, “
Solvent‐Induced Crystallization of a Polycarbonate Surface and Texture Copying by Polydimethylsiloxane for Improved Surface Hydrophobicity
,”
J. Appl. Polym. Sci.
,
133
(
41
), pp.
1
12
.10.1002/app.43467
5.
Yousaf
,
M. R.
,
Yilbas
,
B. S.
, and
Ali
,
H.
,
2018
, “
Assessment of Optical Transmittance of Oil Impregnated and Non-Wetted Surfaces in Outdoor Environment Towards Solar Energy Harvesting
,”
Sol. Energy
,
163
, pp.
25
31
.10.1016/j.solener.2018.01.079
6.
Yilbas
,
B. S.
,
Yousaf
,
M. R.
,
Al-Sharafi
,
A.
,
Ali
,
H.
,
Al-Sulaiman
,
F.
,
Abu-Dheir
,
N.
,
Khaled
,
M.
, and
Al-Aqeeli
,
N.
,
2017
, “
Silicone Oil Impregnated Nano Silica Modified Glass Surface and Influence of Environmental Dust Particles on Optical Transmittance
,”
RSC Adv.
,
7
(
47
), pp.
29762
29771
.10.1039/C7RA03392C
7.
Ozbay
,
S.
,
Yuceel
,
C.
, and
Erbil
,
H. Y.
,
2015
, “
Improved Icephobic Properties on Surfaces With a Hydrophilic Lubricating Liquid
,”
ACS Appl. Mater. Interfaces
,
7
(
39
), pp.
22067
22077
.10.1021/acsami.5b07265
8.
Smith
,
J. D.
,
Dhiman
,
R.
,
Anand
,
S.
,
Reza-Garduno
,
E.
,
Cohen
,
R. E.
,
McKinley
,
G. H.
, and
Varanasi
,
K. K.
,
2013
, “
Droplet Mobility on Lubricant-Impregnated Surfaces
,”
Soft Matter
,
9
(
6
), pp.
1772
1780
.10.1039/C2SM27032C
9.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
, and
Hassan
,
G.
,
2019
, “
Droplet on Oil Impregnated Surface: Temperature and Velocity Fields
,”
Int. J. Therm. Sci.
,
146
, p.
106054
.10.1016/j.ijthermalsci.2019.106054
10.
Schellenberger
,
F.
,
Xie
,
J.
,
Encinas
,
N.
,
Hardy
,
A.
,
Klapper
,
M.
,
Papadopoulos
,
P.
,
Butt
,
H.-J.
, and
Vollmer
,
D.
,
2015
, “
Direct Observation of Drops on Slippery Lubricant-Infused Surfaces
,”
Soft Matter
,
11
(
38
), pp.
7617
7626
.10.1039/C5SM01809A
11.
Yang
,
X.
,
Liu
,
Z.
,
Liu
,
X.
, and
Song
,
J.
,
2019
, “
Nanotextured Surfaces With Underwater Anisotropic Sliding Resistance for Oil Transfer and Coalescence
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
580
, p.
123691
.10.1016/j.colsurfa.2019.123691
12.
Luo
,
S.
,
Peng
,
X.-X.
,
Zhang
,
Y.-F.
,
Fu
,
P.
, and
Du
,
F.-P.
,
2020
, “
Oil-Repellent and Antifog Coatings Based on Poly (Vinyl Alcohol)/Hydrolyzed Poly (Styrene-Co-Maleic Anhydride)/Fluorocarbon Surfactant
,”
Prog. Org. Coat.
,
141
, p.
105560
.10.1016/j.porgcoat.2020.105560
13.
Tong
,
W.
,
Xiong
,
D.
,
Wang
,
N.
,
Yan
,
C.
, and
Tian
,
T.
,
2018
, “
Green and Timesaving Fabrication of a Superhydrophobic Surface and Its Application to Anti-Icing, Self-Cleaning and Oil-Water Separation
,”
Surf. Coat. Technol.
,
352
, pp.
609
618
.10.1016/j.surfcoat.2018.08.035
14.
Zhang
,
J.
,
Chen
,
R.
,
Liu
,
J.
,
Liu
,
Q.
,
Yu
,
J.
,
Zhang
,
H.
,
Jing
,
X.
,
Liu
,
P.
, and
Wang
,
J.
,
2020
, “
Superhydrophobic Nanoporous Polymer-Modified Sponge for In Situ Oil/Water Separation
,”
Chemosphere
,
239
, p.
124793
.10.1016/j.chemosphere.2019.124793
15.
Zhang
,
J.
,
Song
,
Y.
, and
Li
,
D.
,
2019
, “
Thin Liquid Film Between a Floating Oil Droplet and a Glass Slide Under DC Electric Field
,”
J. Colloid Interface Sci.
,
534
, pp.
262
269
.10.1016/j.jcis.2018.09.030
16.
Hsieh
,
C.-T.
,
Wu
,
F.-L.
, and
Chen
,
W.-Y.
,
2010
, “
Sliding Behavior of Oil Droplets on Nanosphere Stacking Layers With Different Surface Textures
,”
Appl. Surf. Sci.
,
256
(
23
), pp.
7253
7259
.10.1016/j.apsusc.2010.05.060
17.
Yilbas
,
B. S.
,
Ali
,
H.
,
Al-Sulaiman
,
F.
, and
Al-Qahtani
,
H.
,
2017
, “
Effect of Mud Drying Temperature on Surface Characteristics of a Polycarbonate PV Protective Cover
,”
Sol. Energy
,
143
, pp.
63
72
.10.1016/j.solener.2016.12.052
18.
Heib
,
F.
, and
Schmitt
,
M.
,
2016
, “
Statistical Contact Angle Analyses With the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications
,”
Coat.
,
6
(
4
), p.
57
.10.3390/coatings6040057
19.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2018
, “
Particle Image Velocimetry (PIV) Uncertainty Quantification Using Moment of Correlation (MC) Plane
,”
Meas. Sci. Technol.
,
29
(
11
), p.
115301
.10.1088/1361-6501/aadfb4
20.
Alfrey
,
T.
, Jr
,
Gurnee
,
E. F.
, and
Lloyd
,
W. G.
,
2007
, “
Diffusion in Glassy Polymers
,”
J. Polym. Sci. Part C: Polym. Symposia
,
12
(
1
), pp.
249
261
.10.1002/polc.5070120119
21.
Sanopoulou
,
M.
, and
Stamatialis
,
D. F.
,
2001
, “
Study of the Transition From Fickian to Case II Sorption Kinetics in the System Poly (Ethyl Methacrylate)–Liquid Methyl Alcohol
,”
Polym.
,
42
(
4
), pp.
1429
1439
.10.1016/S0032-3861(00)00494-8
22.
Brandrup
,
J.
,
Immergut
,
E. H.
,
Grulke
,
E. A.
,
Abe
,
A.
, and
Bloch
,
D. R.
,
1999
,
Polymer Handbook
,
Wiley
,
New York
.
23.
Van Krevelen
,
D. W.
, and
Te Nijenhuis
,
K.
,
2009
,
Properties of Polymers: Their Correlation With Chemical Structure; Their Numerical Estimation and Prediction From Additive Group Contributions
,
Elsevier
, Oxford, UK.
24.
Lauritzen
,
J. I.
, Jr.
, and
Hoffman
,
J. D.
,
1960
, “
Theory of Formation of Polymer Crystals With Folded Chains in Dilute Solution
,”
J. Res. Natl. Bur. Stand. Sect. A, Phys. Chem
,
64A
(
1
), p.
73
.10.6028/jres.064A.007
25.
Frank
,
F. C.
, and
Tosi
,
M.
,
1961
, “
On the Theory of Polymer Crystallization
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
263
(
1314
), pp.
323
339
.10.1098/rspa.1961.0163
26.
Lafuma
,
A.
, and
Quéré
,
D.
,
2011
, “
Slippery Pre-Suffused Surfaces
,”
Euro Phys. Lett.
,
96
(
5
), p.
56001
.10.1209/0295-5075/96/56001
27.
Oss
,
C. J. V.
,
Good
,
R. J.
, and
Busscher
,
R. J.
,
1990
, “
Estimation of the Polar Surface Tension Parameters of Glycerol and Formamide, for Use in Contact Angle Measurements on Polar Solids
,”
J. Dispers. Sci. andTechnology
,
11
(
1
), pp.
75
81
.10.1080/01932699008943237
28.
Van Oss
,
C. J.
,
Chaudhury
,
M. K.
, and
Good
,
R. J.
,
1988
, “
Interfacial Lifshitz-Van Der Waals and Polar Interactions in Macroscopic Systems
,”
Chem. Rev.
,
88
(
6
), pp.
927
941
.10.1021/cr00088a006
29.
El‐Hamouz
,
A.
,
2007
, “
Effect of Surfactant Concentration and Operating Temperature on the Drop Size Distribution of Silicon Oil Water Dispersion
,”
J. Dispers. Sci. Technol.
,
28
(
5
), pp.
797
804
.10.1080/01932690701345893
30.
Ricci
,
E.
,
Sangiorgi
,
R.
, and
Passerone
,
A.
,
1986
, “
Density and Surface Tension of Dioctylphthalate, Silicone Oil and Their Solutions
,”
Surf. Coat. Technol.
,
28
(
2
), pp.
215
223
.10.1016/0257-8972(86)90060-5
31.
Schwartz
,
L. W.
,
1989
, “
Viscous Flows Down an Inclined Plane: Instability and Finger Formation
,”
Phys. Fluids A Fluid Dyn.
,
1
(
3
), pp.
443
445
.10.1063/1.857466
32.
Ruyer-Quil
,
C.
, and
Manneville
,
P.
,
1998
, “
Modeling Film Flows Down Inclined Planes
,”
Eur. Phys. J. B-Condens. Matter Complex Syst.
,
6
(
2
), pp.
277
292
.10.1007/s100510050550
33.
Ng
,
C.-O.
, and
Wang
,
C. Y.
,
2010
, “
Apparent Slip Arising From Stokes Shear Flow Over a Bidimensional Patterned Surface
,”
Microfluid. Nanofluid.
,
8
(
3
), pp.
361
371
.10.1007/s10404-009-0466-x
34.
Cao
,
Z.
,
Stevens
,
M. J.
,
Carrillo
,
J.-M. Y.
, and
Dobrynin
,
A. V.
,
2015
, “
Adhesion and Wetting of Soft Nanoparticles on Textured Surfaces: Transition Between Wenzel and Cassie–Baxter States
,”
Langmuir
,
31
(
5
), pp.
1693
1703
.10.1021/la5045442
35.
Peng
,
M.
,
Kurokawa
,
T.
,
Gong
,
J. P.
,
Osada
,
Y.
, and
Zheng
,
Q.
,
2002
, “
Effect of Surface Roughness of Hydrophobic Substrate on Heterogeneous Polymerization of Hydrogels
,”
J. Phys. Chem. B
,
106
(
12
), pp.
3073
3081
.10.1021/jp012521u
36.
Yang
,
S.-M.
,
1987
, “
Motions of a Sphere in a Time-Dependent Stokes Flow: A Generalization of Faxen's Law
,”
Korean J. Chem. Eng.
,
4
(
1
), pp.
15
22
.10.1007/BF02698094
You do not currently have access to this content.