Abstract

The periodic shedding of cloud cavitation in a nozzle orifice has a significant influence on the flow field and may have destructive effects. Most of the existing research on the shedding of cloud cavitation in an orifice is based on experimental visualization with a focus on the two-dimensional (2D) motion of the re-entrant jet and the shedding mechanism. However, the actual cloud cavitation shedding in an orifice is a complex three-dimensional (3D) process. Some limited signs of three-dimensionality and asymmetry in cylindrical orifices have been detected recently, but the 3D shedding characteristics remain unclear. In this paper, the cavitation regimes and periodic shedding process in the scaled-up nozzle orifice used by the Stanley experiment were simulated with large eddy simulation (LES). The re-entrant jet and periodic shedding mechanism, as well as, the shedding frequency, were analyzed from 2D and 3D perspectives. The main results show that the simulated cavitation regimes and the 2D periodic shedding mechanism agree fairly well with the experimental observations, but more 3D features are revealed. By analyzing the 3D shedding process and the three-dimensionality caused by the inclination of the closure line, the three-dimensional asymmetric shedding mode with phase difference π is revealed. Based upon this finding, the shedding frequency, and Strouhal number are calculated. The corresponding relationships between shedding frequencies and the frequency peaks of the power spectrum density (PSD) for pressure fluctuations are also confirmed. These results extend the understanding of the unsteady cavitating flow within nozzle orifices from 2D to 3D patterns.

References

1.
Sun
,
Z.
,
Li
,
G.
,
Chen
,
C.
,
Yu
,
Y.
, and
Gao
,
G.
,
2015
, “
Numerical Investigation on Effects of Nozzle's Geometric Parameters on the Flow and the Cavitation Characteristics Within Injector's Nozzle for a High-Pressure Common-Rail DI Diesel Engine
,”
Energy Convers. Manage.
,
89
, pp.
843
861
.10.1016/j.enconman.2014.10.047
2.
He
,
Z.
,
Chen
,
Y.
,
Leng
,
X.
,
Wang
,
Q.
, and
Guo
,
G.
,
2016
, “
Experimental Visualization and LES Investigations on Cloud Cavitation Shedding in a Rectangular Nozzle Orifice
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
108
116
.10.1016/j.icheatmasstransfer.2016.05.033
3.
Trummler
,
T.
,
Schmidt
,
S. J.
, and
Adams
,
N. A.
,
2020
, “
Investigation of Condensation Shocks and Re-Entrant Jet Dynamics in a Cavitating Nozzle Flow by Large-Eddy Simulation
,”
Int. J. Multiphase Flow
,
125
, p.
103215
.10.1016/j.ijmultiphaseflow.2020.103215
4.
Tamaki
,
N.
,
Shimizu
,
M.
, and
Hiroyasu
,
H.
,
2001
, “
Enhancement of the Atomization of a Liquid Jet by Cavitation in a Nozzle Hole
,”
Atom. Spray
,
11
, pp.
125
137
.10.1615/AtomizSpr.v11.i2.20
5.
Hiroyasu
,
H.
,
2000
, “
Spray Breakup Mechanism From the Hole-Type Nozzle and Its Applications
,”
Atom. Spray
,
10
(
3–5
), pp.
511
527
.10.1615/AtomizSpr.v10.i3-5.130
6.
Sanmiguel-Rojas
,
E.
,
Gutierrez-Castillo
,
P.
,
del Pino
,
C.
, and
Auñón-Hidalgo
,
J. A.
,
2019
, “
Cavitation in Transient Flows Through a Micro-Nozzle
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091107
.10.1115/1.4042887
7.
Payri
,
F.
,
Bermudez
,
V.
,
Payri
,
R.
, and
Salvador
,
F. J.
,
2004
, “
The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles
,”
Fuel
,
83
(
4–5
), pp.
419
431
.10.1016/j.fuel.2003.09.010
8.
Payri
,
R.
,
Garcia
,
J.
,
Salvador
,
F.
, and
Gimeno
,
J.
,
2005
, “
Using Spray Momentum Flux Measurements to Understand the Influence of Diesel Nozzle Geometry on Spray Characteristics
,”
Fuel
,
84
(
5
), pp.
551
561
.10.1016/j.fuel.2004.10.009
9.
Asi
,
O.
,
2006
, “
Failure of a Diesel Engine Injector Nozzle by Cavitation Damage
,”
Eng. Fail Anal.
,
13
(
7
), pp.
1126
1133
.10.1016/j.engfailanal.2005.07.021
10.
Gavaises
,
M.
,
Papoulias
,
D.
,
Andriotis
,
A.
,
Giannadakis
,
E.
, and
Theodorakakos
,
A.
,
2007
, “
Link Between Cavitation Development and Erosiondamage in Diesel Fuel Injector Nozzles
,”
SAE
Paper No. 2007-01–0246.10.4271/2007-01-0246
11.
Gavaises
,
M.
,
2008
, “
Flow in Valve Covered Orifice Nozzles With Cylindrical and Tapered Holes and Link to Cavitation Erosion and Engine Exhaust Emissions
,”
Int. J. Eng. Res.
,
9
(
6
), pp.
435
447
.10.1243/14680874JER01708
12.
Khojasteh-Manesh
,
M.
, and
Miralam
,
M.
,
2019
, “
Evaluation of Cavitation Erosion Intensity in a Microscale Nozzle Using Eulerian–Lagrangian Bubble Dynamic Simulation
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061303
.10.1115/1.4042960
13.
Roosen
,
P.
,
Unruh
,
O.
, and
Behmann
,
M.
,
1996
, “
Untersuchung Und Modelierung Des Transienten Verhaltens Von Kavitationserscheinungen Bei Ein- Und Mehrkomponentigen Kraftstoffen in Schnell Durchstromten Dusen
,” Institute for Technical Thermodynamics,
RWTH Aachen (Univ. of Tech.)
,
Germany
(in German), Internal Report.
14.
Winklhofer
,
E.
,
Philipp
,
H.
,
Hirsch
,
A.
, and
Morozov
,
A.
,
2000
, “
Cavitation and Spray Formation in Diesel Flow Situations
,”
Proceedings of the ILASS-Europe Conference
,
Darmstadt, Germany
, Sept. 11–13, pp.
I71
I76
.10.13140/2.1.4206.7846
15.
Winklhofer
,
E.
,
Kull
,
E.
,
Kelz
,
E.
, and
Morozov
,
A.
,
2001
, “
Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments Under Cavitation Conditions
,”
Proceedings of the ILASS-Europe Conference
,
Zurich
, Sept. 2–6, pp.
574
579
.10.13140/2.1.1716.4161
16.
Stanley
,
C.
,
Barber
,
T.
,
Milton
,
B.
, and
Rosengarten
,
G.
,
2011
, “
Periodic Cavitation Shedding in a Cylindrical Orifice
,”
Exp. Fluids
,
51
(
5
), pp.
1189
1200
.10.1007/s00348-011-1138-7
17.
Stanley
,
C.
,
2012
, “
Experimental Investigation of Cavitation in a Cylindrical Orifice
,”
Ph.D. thesis
.
University of New South Wales
, Sydney, Australia.http://unsworks.unsw.edu.au/fapi/datastream/unsworks:10275/SOURCE02?view=true
18.
Soteriou
,
C.
,
Andrews
,
R.
, and
Smith
,
M.
,
1995
, “
Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization
,”
SAE
Paper No. 950080.10.4271/950080
19.
Sato
,
K.
, and
Saito
,
Y.
,
2002
, “
Unstable Cavitation Behavior in a Circular-Cylindrical Orifice Flow
,”
JSME Int. J., Ser. B
,
45
(
3
), pp.
638
645
.10.1299/jsmeb.45.638
20.
Sugimoto
,
Y.
, and
Sato
,
K.
,
2009
, “
Visualization of Unsteady Behavior of Cavitation in Circular Cylindrical Orifice With Abruptly Expanding Part [a]
,”
Proceedings of the 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
,
Kanazawa, Japan
, Sept. 27–Oct. 2, Paper No. N13P1156.
21.
Sou
,
A.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2010
, “
Cavitation in Nozzles of Plain Orifice Atomizers With Various Length-to-Diameter Ratios
,”
Atom. Spray
,
20
(
6
), pp.
513
524
.10.1615/AtomizSpr.v20.i6.30
22.
Nurick
,
W. H.
,
1976
, “
Orifice Cavitation and Its Effect on Spray Mixing
,”
ASME J. Fluids Eng.
,
98
(
4
), pp.
681
687
.10.1115/1.3448452
23.
De Giorgi
,
M. G.
,
Ficarella
,
A.
, and
Tarantino
,
M.
,
2013
, “
Evaluating Cavitation Regimes in an Internal Orifice at Different Temperatures Using Frequency Analysis and Visualization
,”
Int. J. Heat Fluid Flow
,
39
, pp.
160
172
.10.1016/j.ijheatfluidflow.2012.11.002
24.
Mitroglou
,
N.
,
Stamboliyski
,
V.
,
Karathanassis
,
I. K.
,
Nikas
,
K. S.
, and
Gavaises
,
M.
,
2017
, “
Cloud Cavitation Vortex Shedding Inside an Injector Nozzle
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
179
189
.10.1016/j.expthermflusci.2017.02.011
25.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.10.1115/1.2910131
26.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
795
.10.1115/1.2819499
27.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
28.
Ganesh
,
H.
,
2015
, “
Bubbly Shock Propagation as a Cause of Sheet to Cloud Transition of Partial Cavitation and Stationary Cavitation Bubbles Forming on a Delta Wing Vortex
,”
Ph.D. thesis
,
University of Michigan
, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/111484
29.
Ganesh
,
H.
,
Mäkiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.10.1017/jfm.2016.425
30.
Jahangir
,
S.
,
Hogendoorn
,
W.
, and
Poelma
,
C.
,
2018
, “
Dynamics of Partial Cavitation in an Axisymmetric Converging-Diverging Nozzle
,”
Int. J. Multiphase Flow
,
106
, pp.
34
45
.10.1016/j.ijmultiphaseflow.2018.04.019
31.
Charrière
,
B.
, and
Goncalves
,
E.
,
2017
, ” “
Numerical Investigation of Periodic Cavitation Shedding in a Venturi
,”
Int. J. Heat Fluid Flow
,
64
, pp.
41
54
.10.1016/j.ijheatfluidflow.2017.01.011
32.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2005
,
Fundamentals of Cavitation
,
Springer Science & Business Media
,
Dordrecht, The Netherlands
.
33.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
,
1997
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
(
1/4
), pp.
91
114
.10.1023/A:1000763130780
34.
Duttweiler
,
M. E.
, and
Brennen
,
C. E.
,
1998
, “
Partial Cavity Instabilities
,”
Proceedings of US-Japan Seminar: Abnormal Flow Phenomen in Turbomachines
,
Osaka, Japan
, Nov. 1–6, Paper No. DUT18b.
35.
Ahuja
,
V.
,
Hosangadi
,
A.
,
Hitt
,
M. A.
, and
Lineberry
,
D. M.
,
2013
, “
Numerical Simulations of Instabilities in Single-Hole Orifice Elements
,”
AIAA
Paper No. 2013-4058.10.2514/6.2013-4058
36.
Willian
,
H.
,
2017
, “
Experimental Investigation of Cavitation Regimes in a Converging-Diverging Nozzle
,” Master dissertation,
Delft University of Technology
, Delft, The Netherlands.
37.
Aeschlimann
,
V.
,
Barre
,
S.
, and
Djeridi
,
H.
,
2013
, “
Unsteady Cavitation Analysis Using Phase Averaging and Conditional Approaches in a 2D Venturi
,”
Open J. Fluid Dyn
,
03
(
03
), pp.
171
183
.10.4236/ojfd.2013.33022
38.
Strasser
,
W.
,
2020
, “
The War on Liquids: Disintegration and Reaction by Enhanced Pulsed Blasting
,”
Chem. Eng. Sci.
,
216
, p.
115458
.10.1016/j.ces.2019.115458
39.
Strasser
,
W.
, and
Battaglia
,
F.
,
2017
, “
The Effects of Pulsation and Retraction on non-Newtonian Flows in Three-Stream Injector Atomization Systems
,”
Chem. Eng. J.
,
309
(
1
), pp.
532
544
.10.1016/j.cej.2016.10.046
40.
Strasser
,
W.
, and
Battaglia
,
F.
,
2016
, “
Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111303
.10.1115/1.4033422
41.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2016
, “
Large Eddy Simulation of the Transition From Sheet to Cloud Cavitation Over a Wedge
,”
Int. J. Multiphase Flow
,
83
, pp.
86
102
.10.1016/j.ijmultiphaseflow.2016.03.015
42.
Bhatt
,
M.
, and
Mahesh
,
K.
,
2020
, “
Numerical Investigation of Partial Cavitation Regimes Over a Wedge Using Large Eddy Simulation
,”
Int. J. Multiphase Flow
,
122
, p.
103155
.10.1016/j.ijmultiphaseflow.2019.103155
43.
Ji
,
B.
,
Luo
,
X.
,
Arndt Roger
,
E. A.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.10.1016/j.ijmultiphaseflow.2014.10.008
44.
Long
,
Y.
,
Long
,
X.
,
Ji
,
B.
, and
Xing
,
T.
,
2019
, “
Verification and Validation of Large Eddy Simulation of Attached Cavitating Flow Around a Clark-Y Hydrofoil
,”
Int. J. Multiphase Flow
,
115
, pp.
93
107
.10.1016/j.ijmultiphaseflow.2019.03.026
45.
Ducoin
,
A.
,
Huang
,
B. A.
, and
Young
,
Y. L.
,
2012
, “
Numerical Modeling of Unsteady Cavitating Flows Around a Stationary Hydrofoil
,”
Int. J. Rotating Mach. Artic. ID
,
2012
, pp.
1
17
.10.1155/2012/215678
46.
Frikha
,
S.
,
Coutier-Delgosha
,
O.
, and
Astolfi
,
J. A.
,
2008
, “
Influence of the Cavitation Model on the Simulation of Cloud Cavitation on 2D Foil Section
,”
Int. J. Rotating Mach
,
2008
, pp.
1
12
.10.1155/2008/146234
47.
Charrière
,
B.
,
Decaix
,
J.
, and
Goncalves
,
E.
,
2015
, “
A Comparative Study of Cavitation Models in a Venturi Flow
,”
Eur. J. Mech./B Fluids
,
49
, pp.
287
297
.10.1016/j.euromechflu.2014.10.003
48.
Morgut
,
M.
,
Nobile
,
E.
, and
Bilus
,
I.
,
2011
, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil
,”
Int. J. Multiphase Flow
,
37
(
6
), pp.
620
626
.10.1016/j.ijmultiphaseflow.2011.03.005
49.
Martynov
,
S. B.
,
Mason
,
D. J.
, and
Heikal
,
M. R.
,
2006
, “
Modelling of Cavitation Flow in a Nozzle and Its Effect on Spray Development
,”
Proceedings of the 13th International Heat Transfer Conference
,
Begell House
,
Sydney, Australia
, Aug. 13–18, Paper No. JET-08.
50.
Mouvanal
,
S.
,
Chatterjee
,
D.
,
Bakshi
,
S.
,
Burkhardt
,
A.
, and
Mohr
,
V.
,
2018
, “
Numerical Prediction of Potential Cavitation Erosion in Fuel Injectors
,”
Int. J. Multiphase Flow
,
104
, pp.
113
124
.10.1016/j.ijmultiphaseflow.2018.03.005
51.
Bai
,
W.
,
Duan
,
Q.
, and
Zhang
,
Z.
,
2016
, “
Numerical Investigation on Cavitation Within Letdown Orifice of PWR Nuclear Power Plant
,”
Nucl. Eng. Des.
,
305
, pp.
230
245
.10.1016/j.nucengdes.2016.05.013
52.
ANSYS
,
2016
, “ANSYS FLUENT Tutorial Guide 17.0,” ANSYS, Inc., Canonsburg, PA.
53.
Sun
,
Z.
,
Li
,
G.
,
Yu
,
Y.
,
Gao
,
S.
, and
Gao
,
G.
,
2015
, “
Numerical Investigation on Transient Flow and Cavitation Characteristic Within Nozzle During the Oil Drainage Process for a High-Pressure Common-Rail DI Diesel Engine
,”
Energy Convers. Manage.
,
98
, pp.
507
517
.10.1016/j.enconman.2015.04.001
54.
Mohan
,
B.
,
Yang
,
W. M.
, and
Chou
,
S. K.
,
2014
, “
Development of an Accurate Cavitation Coupled Spray Model for Diesel Engine Simulation
,”
Energy Convers. Manage.
,
77
, pp.
269
277
.10.1016/j.enconman.2013.09.035
55.
ANSYS
,
2016
, “ANSYS FLUENT Theory Guide 17.0,” ANSYS, Inc., Canonsburg, PA.
56.
Schnerr
,
G.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Proceedings of Fourth International Conference on Multiphase Flow
,
New Orleans, LA
, May 27–June 1.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
57.
Yuan
,
W.
,
Sauer
,
J.
, and
Schnerr
,
G. H.
,
2001
, “
Modelling and Computation of Unsteady Cavitation Flows in Injection Nozzles
,”
Mech. Ind.
,
2
, pp.
383
394
.10.1016/s1296-2139(01)01120-4
58.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
59.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
60.
Luo
,
X.
,
Ji
,
B.
,
Peng
,
X.
,
Xu
,
H.
, and
Nishi
,
M.
,
2012
, “
Numerical Simulation of Cavity Shedding From a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041202
.10.1115/1.4006416
61.
ANSYS
,
2016
, “ANSYS FLUENT Users Guide 17.0,” ANSYS, Inc., Canonsburg, PA.
62.
Barth
,
T. J.
, and
Jesperson
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.10.2514/6.1989-366
63.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2007
, “
Reference Fluid Thermodynamic and Transport Properties
,” NIST, Gaithersburg, MD, Standard Database 23.
64.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
65.
Komen
,
E. M. J.
,
Camilo
,
L. H.
,
Shams
,
A.
,
Geurts
,
B. J.
, and
Koren
,
B.
,
2017
, “
A Quantification Method for Numerical Dissipation in Quasi-DNS and Under-Resolved DNS, and Effects of Numerical Dissipation in Quasi-DNS and Under-Resolved DNS of Turbulent Channel Flows
,”
J. Comput. Phys.
,
345
, pp.
565
595
.10.1016/j.jcp.2017.05.030
66.
Roache
,
P. J.
,
1994
, “Perspective:
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
, 116(3), pp. 405–413.10.1115/1.2910291
67.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
68.
Mouvanal
,
S.
,
Burkhardt
,
A.
,
Chatterjee
,
D.
, and
Bakshi
,
S.
,
2015
, “
Numerical Prediction of Periodic Cavitation Shedding in Cylindrical Orifice
,”
Proceedings of the International Conference on Liquid Atomization and Spray Systems
,
Taiwan, China
, Aug.
23
27
.https://www.researchgate.net/publication/303961675_Numerical_Prediction_of_Periodic_Cavitation_Shedding_in_Cylindrical_Orifice
69.
Huang
,
R.
,
Shao
,
S.
,
Arndt
,
R. E. A.
,
Luo
,
X.
, and
Hong
,
J.
,
2019
, “
Numerical Study of the Behaviors of Ventilated Supercavities in a Periodic Gust Flow
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061403
.10.1115/1.40461101
70.
Guo
,
G.
,
He
,
Z.
,
Chen
,
Y.
,
Wang
,
Q.
,
Leng
,
X.
, and
Sun
,
S.
,
2017
, “
LES Investigations on Effects of the Residual Bubble on the Single Hole Diesel Injector Jet
,”
Int. J. Heat Mass Transfer
,
112
, pp.
18
27
.10.1016/j.ijheatmasstransfer.2017.04.080
71.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE T. Audio Electroacoustics
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
72.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.10.1115/1.4001971
73.
Wang
,
C.
,
Wang
,
G.
, and
Huang
,
B.
,
2020
, “
Characteristics and Dynamics of Compressible Cavitating Flows With Special Emphasis on Compressibility Effects
,”
Int. J. Multiphase Flow
,
130
, p.
103357
.10.1016/j.ijmultiphaseflow.2020.103357
You do not currently have access to this content.