Abstract

The slant angle plays a crucial role in the flow property of hatchback ground vehicles. An optimum slant angle is obligatory for better handling the ground vehicles when fitted with a rear wing. In this regard, the variation of time-averaged flow properties around a wing-attached hatchback ground vehicle (Ahmed body) due to a variable slant angle is accessed by this paper. The design includes a scaled Ahmed body as a reference ground vehicle and a rear wing with NACA 0018 profile. The computational studies are executed with Reynolds-averaged Navier–Stokes based k-epsilon turbulence model with nonequilibrium wall function. The vehicle's model is scaled to 75% of the actual model, and analyses are conducted with Reynolds number 2.7 × 106. After the study, it is observed that a 15 deg slant angle is the critical angle for the wing attached state in which the drag coefficient is maximum. After this angle, a sudden reduction of coefficients is observed, where 25 deg is critical for without wing condition. Besides this, the two counter-rotating horseshoe vortices in the separation bubble and side edge c-pillar vortices also behave differently due to the wing's presence. The turbulent kinetic energy variation and the variation in coefficients of surface pressure are also affected by the rear wing attachment. This paper will assist in finding the optimum slant angle for hatchback ground vehicles in the presence of a rear wing. Thus the study will help in increasing stability and control for hatchback ground vehicles.

References

References
1.
Hucho
,
W.
, and
Sovran
,
G.
,
1993
, “
Aerodynamics of Road Vehicles
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
485
537
.10.1146/annurev.fl.25.010193.002413
2.
Ahmed
,
S. R.
,
Ramm
,
G.
, and
Faltin
,
G.
,
1984
, “
Some Salient Features of the Time-Averaged Ground Vehicle Wake
,”
SAE Trans.
,
93
, pp.
473
503
.
3.
Bonitz
,
S.
,
Larsson
,
L.
,
Löfdahl
,
L.
, and
Sebben
,
S.
,
2018
, “
Numerical Investigation of Crossflow Separation on the A-Pillar of a Passenger Car
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111105
.10.1115/1.4040107
4.
Chapman
,
G. T.
, and
Yates
,
L. A.
,
1991
, “
Topology of Flow Separation on Three-Dimensional Bodies
,”
ASME Appl. Mech. Rev.
,
44
(
7
), pp.
329
345
.10.1115/1.3119507
5.
Wu
,
J.-Z.
,
Ma
,
H.-Y.
, and
Zhou
,
M.-D.
,
2015
,
Vortical Flows
, Vol. 28,
Springer
, Berlin.
6.
Fu
,
C.
,
Uddin
,
M.
, and
Robinson
,
A. C.
,
2018
, “
Turbulence Modeling Effects on the CFD Predictions of Flow Over a NASCAR Gen 6 Racecar
,”
J. Wind Eng. Ind. Aerodyn.
,
176
, pp.
98
111
.10.1016/j.jweia.2018.03.016
7.
Hanjalic
,
K.
,
2005
, “
Will RANS Survive LES? A View of Perspectives
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
831
839
.10.1115/1.2037084
8.
Roy
,
C. J.
,
Payne
,
J.
, and
McWherter-Payne
,
M.
,
2006
, “
RANS Simulations of a Simplified Tractor/Trailer Geometry
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1083
1089
.10.1115/1.2236133
9.
Makowski
,
F. T.
, and
Kim
,
S.-E.
,
2000
, “
Advances in External-Aero Simulation of Ground Vehicles Using the Steady RANS Equations
,”
SAE
Paper No. 2000-01-0484.10.4271/2000-01-0484
10.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,” NASA, Washington, DC, NASA Technical Memorandum No. 110446.
11.
Cheng
,
S.-Y.
,
Chin
,
K.-Y.
,
Mansor
,
S.
, and
Abd Rahman
,
A. B.
,
2019
, “
Experimental Study of Yaw Angle Effect on the Aerodynamic Characteristics of a Road Vehicle Fitted With a Rear Spoiler
,”
J. Wind Eng. Ind. Aerodyn.
,
184
, pp.
305
312
.10.1016/j.jweia.2018.11.033
12.
Katz
,
J.
, and
Dykstra
,
L.
,
1992
, “
Effect of Passenger Car's Rear Deck Geometry on Its Aerodynamic Coefficients
,”
ASME J. Fluids Eng.
,
114
(
2
), pp.
186
190
.10.1115/1.2910014
13.
Das
,
R. C.
, and
Riyad
,
M.
,
2017
, “
CFD Analysis of Passenger Vehicleat Various Angle of Rear End Spoiler
,”
Procedia Eng.
,
194
, pp.
160
165
.10.1016/j.proeng.2017.08.130
14.
Diasinos
,
S.
, and
Gatto
,
A.
,
2008
, “
Experimental Investigation Into Wing Span and Angle-of-Attack Effects on Sub-Scale Race Car Wing/Wheel Interaction Aerodynamics
,”
Exp. Fluids
,
45
(
3
), pp.
537
546
.10.1007/s00348-008-0499-z
15.
Tsai
,
C.-H.
,
Fu
,
L.-M.
,
Tai
,
C.-H.
,
Huang
,
Y.-L.
, and
Leong
,
J.-C.
,
2009
, “
Computational Aero-Acoustic Analysis of a Passenger Car With a Rear Spoiler
,”
Appl. Math. Modell.
,
33
(
9
), pp.
3661
3673
.10.1016/j.apm.2008.12.004
16.
Buljac
,
A.
,
Džijan
,
I.
,
Korade
,
I.
,
Krizmanić
,
S.
, and
Kozmar
,
H.
,
2016
, “
Automobile Aerodynamics Influenced by Airfoil-Shaped Rear Wing
,”
Int. J. Automot. Technol.
,
17
(
3
), pp.
377
385
.10.1007/s12239-016-0039-4
17.
Cheng
,
S.-Y.
, and
Mansor
,
S.
,
2017
, “
Influence of Rear-Roof Spoiler on the Aerodynamic Performance of Hatchback Vehicle
,”
MATEC Web of Conferences, EDP Sciences
, Cyberjaya, Malaysia, Aug. 2–3.https://www.researchgate.net/publication/311779991_Influence_of_rear-roof_spoiler_on_the_aerodynamic_performance_of_hatchback_vehicle
18.
Kuya
,
Y.
,
Takeda
,
K.
, and
Zhang
,
X.
,
2010
, “
Computational Investigation of a Race Car Wing With Vortex Generators in Ground Effect
,”
ASME J. Fluids Eng.
,
132
(
2
), p. 021102.10.1115/1.4000741
19.
Lee
,
T.
, and
Ko
,
L.
,
2018
, “
Ground Effect on the Vortex Flow and Aerodynamics of a Slender Delta Wing
,”
ASME J. Fluids Eng.
,
140
(
7
), p.
071104
.10.1115/1.4039232
20.
Cheng
,
S.
, and
Mansor
,
S.
,
2017
, “
Rear-Roof Spoiler Effect on the Aerodynamic Drag Performance of a Simplified Hatchback Model
,”
J. Phys.: Conf. Ser.
,
822
(
1
), p. 012008.10.1088/1742-6596/822/1/012008
21.
Li
,
D.
,
2008
,
Encyclopedia of Microfluidics and Nanofluidics
,
Springer Science & Business Media
, Berlin.
22.
Lanfrit
,
M.
,
2005
, “Best Practice Guidelines for Handling Automotive External Aerodynamics With FLUENT,” Version 1.2, Fluent Deutschl GmbH, Darmstadt, Germany.
23.
Reynolds
,
O.
,
1895
, “
IV. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion
,”
Philos. Trans. R. Soc. London A
,
1895
(
186
), pp.
123
164
.10.1098/rsta.1895.0004
24.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k–ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
25.
Rodi
,
W.
,
1991
, “
Experience With Two-Layer Models Combining the k-Epsilon Model With a One-Equation Model Near the wall
,”
AIAA
Paper No. 91-0216.10.2514/6.1991-216
26.
Axerio-Cilies
,
J.
,
Issakhanian
,
E.
,
Jimenez
,
J.
, and
Iaccarino
,
G.
,
2012
, “
An Aerodynamic Investigation of an Isolated Stationary Formula 1 Wheel Assembly
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021101
.10.1115/1.4005768
27.
Altinisik
,
A.
,
Yemenici
,
O.
, and
Umur
,
H.
,
2015
, “
Aerodynamic Analysis of a Passenger Car at Yaw Angle and Two-Vehicle Platoon
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121107
.10.1115/1.4030869
28.
Liu
,
F.
,
2016
, “
A Thorough Description of How Wall Functions Are Implemented in OpenFOAM
,”
Proceedings of CFD With OpenSource Software
, Sweden, Aug. 1, pp.
1
33
.http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2016/FangqingLiu/openfoamFinal.pdf
29.
Tu
,
J.
,
Yeoh
,
G. H.
, and
Liu
,
C.
,
2018
,
Computational Fluid Dynamics: A Practical Approach
,
Butterworth-Heinemann
, Oxford, UK.
30.
Von Kármán
,
T.
,
1930
, “
Mechanische Änlichkeit Und Turbulenz
,”
Nachrrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
, pp.
58
76
.https://eudml.org/doc/59299
31.
Katz
,
J.
,
2006
, “
Aerodynamics of Race Cars
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
27
63
.10.1146/annurev.fluid.38.050304.092016
32.
Bearman
,
P. W.
,
De Beer
,
D.
,
Hamidy
,
E.
, and
Harvey
,
J. K.
,
1988
, “
The Effect of a Moving Floor on Wind-Tunnel Simulation of Road Vehicles
,”
SAE Trans.
,
97
, pp.
200
214
.https://www.jstor.org/stable/44724707
33.
Serre
,
E.
,
Minguez
,
M.
,
Pasquetti
,
R.
,
Guilmineau
,
E.
,
Deng
,
G. B.
,
Kornhaas
,
M.
,
Schäfer
,
M.
,
Fröhlich
,
J.
,
Hinterberger
,
C.
, and
Rodi
,
W.
,
2013
, “
On Simulating the Turbulent Flow Around the Ahmed Body: A French–German Collaborative Evaluation of LES and DES
,”
Comput. Fluids
,
78
, pp.
10
23
.10.1016/j.compfluid.2011.05.017
34.
Lienhart
,
H.
,
Stoots
,
C.
, and
Becker
,
S.
,
2002
, “
Flow and Turbulence Structures in the Wake of a Simplified Car Model (Ahmed Modell)
,”
New Results in Numerical and Experimental Fluid Mechanics III
,
Springer
, Berlin, pp.
323
330
.
35.
Bayraktar
,
I.
,
Landman
,
D.
, and
Baysal
,
O.
,
2001
, “
Experimental and Computational Investigation of Ahmed Body for Ground Vehicle Aerodynamics
,”
SAE Trans.
,
110
, pp.
321
331
.https://www.jstor.org/stable/44687433
You do not currently have access to this content.