Abstract

This work aims at characterizing the flow in the outlet of three gas injectors used in atmospheric burners and developing correlations for the discharge coefficient, air entrainment, momentum, and energy flow rates. These devices have millimeter-sized orifices, a cup-like region at the injector outlet, and the flow occurs in the transition from the laminar to the fully turbulent regimes. The pressure drop was measured and correlated as a function of the orifice Reynolds number for the three injectors. The correlations are able to predict the discharge coefficient within ±5% deviation from the measurements in the range 90Re4400. The axial velocity and turbulent intensity were measured at the outlet of the injectors using a hot-wire anemometer at the orifice Reynolds number of 3060, which is typical of the applications. The measurements were compared to computational fluid dynamics (CFD) solutions using the γReθ Reynolds-averaged Navier–Stokes transition model in the star-ccm+ commercial package. The results indicate the strong influence of the shape of the outlet cup-like region of the injectors on the development of an internal mixing layer and the external mixing layer in the free jet. The momentum and energy flow rates for the injector model with the largest cup are reduced to 50% and 21%, respectively, of the simplest gas injector. However, the gas jet in this injector carries 28% of the stoichiometric air before leaving the cup. These aspects must be taken into account in the preliminary design of atmospheric burners.

References

1.
WLPGA
,
2019
, “Annual Report 2019,” World LPG Association, Neuilly-sur-Seine, France, Report No. 1.
2.
]
EUROSTAT
,
2018
,
Energy Consumption in Households
,
European Union
,
Luxembourg
.
3.
WHO
,
2014
,
WHO Guidelines for Indoor Air Quality: Household Fuel Combustion
,
World Health Organization
,
Geneva, Switzerland
.
4.
IEA
,
2016
,
World Energy Outlook 2015
,
International Energy Association
,
Paris, France
.
5.
Gould
,
C. F.
, and
Urpelainen
,
J.
,
2018
, “
LPG as a Clean Cooking Fuel: Adoption, Use, and Impact in Rural India
,”
Energy Policy
,
122
, pp.
395
408
.10.1016/j.enpol.2018.07.042
6.
Koustav
,
S.
,
2020
, “
India's LPG Use to Surge From Record as Govt Promotes Cleaner Fuel
,” ETEnergyworld.com, Noida, Uttar Pradesh, Índia, accessed Nov. 12, https://energy.economictimes.indiatimes.com/news/oil-and-gas/lpg-use-to-surge-from-record-as-govt-promotes-cleaner-fuel/69156442
7.
Chen
,
Y.
,
Shen
,
H.
,
Zhong
,
Q.
,
Chen
,
H.
,
Huang
,
T.
,
Liu
,
J.
,
Cheng
,
H.
,
Zeng
,
E. Y.
,
Smith
,
K. R.
, and
Tao
,
S.
,
2016
, “
Transition of Household Cookfuels in china From 2010 to 2012
,”
Appl. Energy
,
184
, pp.
800
809
.10.1016/j.apenergy.2016.07.136
8.
Duan
,
X.
,
Jiang
,
Y.
,
Wang
,
B.
,
Zhao
,
X.
,
Shen
,
G.
,
Cao
,
S.
,
Huang
,
N.
,
Qian
,
Y.
,
Chen
,
Y.
, and
Wang
,
L.
,
2014
, “
Household Fuel Use for Cooking and Heating in china: Results From the First Chinese Environmental Exposure-Related Human Activity Patterns Survey (Ceerhaps)
,”
Appl. Energy
,
136
, pp.
692
703
.10.1016/j.apenergy.2014.09.066
9.
Luo
,
Y.
,
Zhong
,
Y.
,
Pang
,
L.
,
Zhao
,
Y.
,
Liang
,
R.
, and
Zheng
,
X.
,
2021
, “
The Effects of Indoor Air Pollution From Solid Fuel Use on Cognitive Function Among Middle-Aged and Older Population in China
,”
Sci. Total Environ.
,
754
, p.
142460
.10.1016/j.scitotenv.2020.142460
10.
Mainali
,
B.
,
Pachauri
,
S.
, and
Nagai
,
Y.
,
2012
, “
Analyzing Cooking Fuel and Stove Choices in China Till 2030
,”
J. Renewable Sustainable Energy
,
4
(
3
), pp.
031805
114503
.10.1063/1.4730416
11.
Hou
,
B.-D.
,
Tang
,
X.
,
Ma
,
C.
,
Liu
,
L.
,
Wei
,
Y.-M.
, and
Liao
,
H.
,
2017
, “
Cooking Fuel Choice in Rural china: Results From Microdata
,”
J. Clean. Prod.
,
142
, pp.
538
547
.10.1016/j.jclepro.2016.05.031
12.
Muller
,
C.
, and
Yan
,
H.
,
2018
, “
Household Fuel Use in Developing Countries: Review of Theory and Evidence
,”
Energy Econ.
,
70
, pp.
429
439
.10.1016/j.eneco.2018.01.024
13.
Poblete-Cazenave
,
M.
, and
Pachauri
,
S.
,
2018
, “
A Structural Model of Cooking Fuel Choices in Developing Countries
,”
Energy Econ.
,
75
, pp.
449
463
.10.1016/j.eneco.2018.09.003
14.
ABNT
,
1999
,
Domestic Cooking Appliance Burning gas - Part 2: Rational Use of Energy (in Portuguese)
,
Brazilian Standard, Brazilian Association of Standards
,
ABNT, São Paulo, Brazil
, Report No. NBR13723-2.
15.
Hodnebrog
,
O.
,
Dalsoren
,
S. B.
, and
Myhre
,
G.
,
2018
, “
Lifetimes, Direct and Indirect Radiative Forcing, and Global Warming Potentials of Ethane (c2h6), Propane (c3h8), and Butane (c4h10)
,”
Atmos. Sci. Lett.
,
19
(
2
), p.
e804
.10.1002/asl.804
16.
Myhre
,
G.
, and
Shindell
,
D.
,
2013
, “
Anthropogenic and Natural Radiative Forcing, IPCC WGI ar5
,”
Fifth Assessment Report—Climate Change
, Cambridge University Press, Cambridge, UK, pp.
659
740
, Report No. 1.
17.
IPCC
,
2019
, “
EFDB—Emission Factor Database
,” IPCC, Bonn, Germany, accessed Nov. 30, https://www.ipcc-nggip.iges.or.jp/EFDB/main.php
18.
IEA
,
2006
,
World Energy Outlook, Chap. 15: Energy for Cooking in Developing Countries
,
International Energy Association
,
Paris, France
.
19.
ABNT
,
2004
,
Domestic Cooking Appliance Burning gas - Part 1: Performance and Safety (in Portuguese)
,
Brazilian Standard, Brazilian Association of Standards, ABNT
,
São Paulo, Brazil
, Report No. NBR13723-1.
20.
CEN
,
1999
,
Domestic Cooking Appliances Burning Gas – Part 1–1: Safety – General
,
European Standard, Comité Européen de Normalisation
,
Brussels, Belgium
, Report No. EN 3011.
21.
CEN
,
2003
,
Test Gases. Test Pressures. Appliance Categories
,
European Standard, Comité Européen de Normalisation
,
Brussels, Belgium
, Report No. EN 437.
22.
Singh
,
G.
,
Sundararajan
,
T.
, and
Bhaskaran
,
K. A.
,
2003
, “
Mixing and Entrainment Characteristics of Circular and Non-Circular Confined Jets
,”
ASME J. Fluids Eng.
,
125
(
5
), pp.
835
842
.10.1115/1.1595676
23.
Lawn
,
C. J.
,
2003
, “
A Simple Method for the Design of Gas Burner Injectors
,”
Proc. Inst. Mech. Eng., Part C
,
217
(
2
), pp.
237
246
.10.1243/095440603762826558
24.
Serres
,
I.
,
Chauveau
,
C.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2002
, “
Characterization of Confinement and Impingement Effects on the Near Field of Axisymmetric Jets
,”
Laser Techniques for Fluid Mechanics
,
Springer
, Heidelberg, Germany, pp.
373
386
.
25.
Namkhat
,
A.
, and
Jugjai
,
S.
,
2010
, “
Primary Air Entrainment Characteristics for a Self-Aspirating Burner: Model and Experiments
,”
Energy
,
35
(
4
), pp.
1701
1708
.10.1016/j.energy.2009.12.020
26.
Lipari
,
G.
, and
Stansby
,
P. K.
,
2011
, “
Review of Experimental Data on Incompressible Turbulent Round Jets
,”
Flow, Turbul. Combust.
,
87
(
1
), pp.
79
114
.10.1007/s10494-011-9330-7
27.
Abdel-Rahman
,
A.
,
2010
, “
A Review of Effects of Initial and Boundary Conditions on Turbulent Jets
,”
WSEAS Trans. Fluid Mech
.,
5
(
4
), pp.
257
275
. https://www.researchgate.net/publication/266162786_A_Review_of_Effects_of_Initial_and_Boundary_Conditions_on_Turbulent_Jets
28.
Ball
,
C.
,
Fellouah
,
H.
, and
Pollard
,
A.
,
2012
, “
The Flow Field in Turbulent Round Free Jets
,”
Prog. Aerosp. Sci.
,
50
, pp.
1
26
.10.1016/j.paerosci.2011.10.002
29.
Vouros
,
A.
, and
Panidis
,
T.
,
2013
, “
Turbulent Properties of a Low Reynolds Number, Axisymmetric, Pipe Jet
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
42
50
.10.1016/j.expthermflusci.2012.05.012
30.
Hashiehbaf
,
A.
, and
Romano
,
G.
,
2013
, “
Particle Image Velocimetry Investigation on Mixing Enhancement of Non-Circular Sharp Edge Nozzles
,”
Int. J. Heat Fluid Flow
,
44
, pp.
208
221
.10.1016/j.ijheatfluidflow.2013.05.017
31.
Xia
,
L. P.
, and
Lam
,
K. M.
,
2009
, “
Velocity and Concentration Measurements in Initial Region of Submerged Round Jets in Stagnant Environment and in Coflow
,”
J. Hydro-Environ. Res.
,
3
(
1
), pp.
21
34
.10.1016/j.jher.2009.03.002
32.
Fellouah
,
H.
,
Ball
,
C.
, and
Pollard
,
A.
,
2009
, “
Reynolds Number Effects Within the Development Region of a Turbulent Round Free Jet
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3943
3954
. (Special Issue Honoring Professor D. Brian Spalding)10.1016/j.ijheatmasstransfer.2009.03.029
33.
Mi
,
J.
,
Xu
,
M.
, and
Zhou
,
T.
,
2013
, “
Reynolds Number Influence on Statistical Behaviors of Turbulence in a Circular Free Jet
,”
Phys. Fluids
,
25
(
7
), p.
075101
.10.1063/1.4811403
34.
Capone
,
A.
,
Soldati
,
A.
, and
Romano
,
G.
,
2013
, “
Mixing and Entrainment in the Near Field of Turbulent Round Jets
,”
Exp. Fluids
,
54
(
1
), p.
1434
.10.1007/s00348-012-1434-x
35.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
,
2008
, “
The Influence of Reynolds Number on a Plane Jet
,”
Phys. Fluids
,
20
(
7
), p.
075108
.10.1063/1.2959171
36.
Suresh
,
P. R.
,
Das
,
S. K.
, and
Sundararajan
,
T.
,
2007
, “
Influence of Reynolds Number on the Evolution of a Plane Air Jet Issuing From a Slit
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1288
1296
.10.1115/1.2776959
37.
Xu
,
G.
, and
Antonia
,
R. A.
,
2002
, “
Effect of Different Initial Conditions on a Turbulent Round Free Jet
,”
Exp. Fluids
,
33
(
5
), pp.
677
683
.10.1007/s00348-002-0523-7
38.
1996
, “
The Near-Field Characteristics of Circular Jets at Low Reynolds Numbers
,”
Mech. Res. Commun.
,
23
(
3
), pp.
313
324
.10.1016/0093-6413(96)00028-6
39.
Papadopoulos
,
G.
, and
Pitts
,
W. M.
,
1998
, “
Scaling the Near-Field Centerline Mixing Behaviour of Axisymmetric Turbulent Jets
,”
AIAA J.
,
36
(
9
), pp.
1635
1642
.10.2514/2.565
40.
Ganapathisubramani
,
B.
,
Longmire
,
E. K.
, and
Marusic
,
I.
,
2002
, “
Investigation of Three Dimensionality in the Near Field of a Round Jet Using Stereo PIV
,”
J. Turbul.
,
3
(
16
), pp.
N16
N12
.10.1088/1468-5248/3/1/016
41.
Babu
,
P. C.
, and
Mahesh
,
K.
,
2004
, “
Upstream Entrainment in Numerical Simulations of Spatially Evolving Round Jets
,”
Phys. Fluids
,
16
(
10
), pp.
3699
3705
.10.1063/1.1780548
42.
Kwon
,
S.
, and
Seo
,
I.
,
2005
, “
Reynolds Number Effects on the Behavior of a Non-Buoyant Round Jet
,”
Exp. Fluids
,
38
(
6
), pp.
801
812
.10.1007/s00348-005-0976-6
43.
Or
,
C.
,
Lam
,
K.
, and
Liu
,
P.
,
2011
, “
Potential Core Lengths of Round Jets in Stagnant and Moving Environments
,”
J. Hydro-Environ. Res.
,
5
(
2
), pp.
81
91
.10.1016/j.jher.2011.01.002
44.
Gilliland
,
T.
,
Ranga-Dinesh
,
K. K. J.
,
Fairweather
,
M.
,
Falle
,
S. A. E. G.
,
Jenkins
,
K. W.
, and
Savill
,
A. M.
,
2012
, “
External Intermittency Simulation in Turbulent Round Jets
,”
Flow, Turbul. Combust.
,
89
(
3
), pp.
385
406
.10.1007/s10494-012-9403-2
45.
Grandchamp
,
X.
, and
Van Hirtum
,
A.
,
2013
, “
Near Field Round Jet Flow Downstream From an Abrupt Contraction Nozzle With Tube Extension
,”
Flow Turbul. Combust.
,
90
(
1
), pp.
95
119
.10.1007/s10494-012-9429-5
46.
Qin
,
S.
,
Krohn
,
B.
,
Downing
,
J.
,
Petrov
,
V.
, and
Manera
,
N.
,
2019
, “
High-Resolution Velocity Field Measurements of Turbulent Round Free Jets in Uniform Environments
,”
Nucl. Technol.
,
205
(
1–2
), pp.
213
225
.10.1080/00295450.2018.1470864
47.
Dowling
,
D. R.
, and
Dimotakis
,
P. E.
,
1990
, “
Similarity of the Concentration Field of Gas-Phase Turbulent Jets
,”
J. Fluid Mech.
,
218
(
1
), pp.
109
141
.10.1017/S0022112090000945
48.
Richards
,
C. D.
, and
Pitts
,
W. M.
,
1993
, “
Global Density Effects on the Self-Preservation Behaviour of Turbulent Free Jets
,”
J. Fluid Mech.
,
254
, pp.
417
435
.10.1017/S0022112093002204
49.
Shinneeb
,
A.-M.
,
Bugg
,
J. D.
, and
Balachandar
,
R.
,
2008
, “
Quantitative Investigation of Vortical Structures in the Near-Exit Region of an Axisymmetric Turbulent Jet
,”
J. Turbul.
,
9
(
19
), pp.
N19
10
.10.1080/14685240802195185
50.
Milanovic
,
I. M.
, and
Hammad
,
K. J.
,
2010
, “
Piv Study of the Near-Field Region of a Turbulent Round Jet
,”
ASME
Paper No. FEDSM-ICNMM2010-31139.10.1115/FEDSM-ICNMM2010-31139
51.
Bogey
,
C.
, and
Bailly
,
C.
,
2006
, “
Large Eddy Simulations of Transitional Round Jets: Influence of the Reynolds Number on Flow Development and Energy Dissipation
,”
Phys. Fluids
,
18
(
6
), p.
065101
.10.1063/1.2204060
52.
Ghasemi
,
A.
,
Roussinova
,
V.
,
Balachandar
,
R.
, and
Barron
,
R. M.
,
2015
, “
Reynolds Number Effects in the Near-Field of a Trubulent Square Jet
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
249
258
.10.1016/j.expthermflusci.2014.10.025
53.
O'Neill
,
P.
,
Soria
,
J.
, and
Honnery
,
D.
,
2004
, “
The Stability of Low Reynolds Number Round Jets
,”
Exp. Fluids
,
36
(
3
), pp.
473
483
.10.1007/s00348-003-0751-5
54.
Abdel-Rahman
,
A.
,
2010
, “
A Review of Effects of Initial and Boundary Conditions on Turbulent Jets
,”
WSEAS Trans. Fluid Mech.
,
5
(
4
), pp.
257
275.
https://www.researchgate.net/publication/266162786_A_Review_of_Effects_of_Initial_and_Boundary_Conditions_on_Turbulent_Jets
55.
Mi
,
J.
, and., and
Nathan
,
G. J.
,
2010
, “
Statistical Properties of Turbulent Free Jets Issuing From Nine Differently-Shaped Nozzles
,”
Flow Turbul. Combust.
,
84
(
4
), pp.
583
606
.10.1007/s10494-009-9240-0
56.
Wu
,
N.
,
Sakai
,
Y.
,
Nagata
,
K.
, and
Ito
,
Y.
,
2015
, “
Dynamics and Geometry of Developing Planar Jets Based on the Invariants of the Velocity Gradient Tensor
,”
J. Hydrodyn.
,
27
(
6
), pp.
894
906
.10.1016/S1001-6058(15)60552-2
57.
Aleyasin
,
S. S.
, and
Tachie
,
M. F.
,
2015
, “
Characteristics of Orifice Jets at Low Reynolds Numbers
,”
10th Pacific Symposium on Flow Visualization and Image Processing, P. C. of Thermal-Fluids Engineering
, ed., PCTFE, Naples, Italy, 15–18 June, Paper No. 2661.
58.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.10.1115/1.1412460
59.
Dimotakis
,
P.
,
2000
, “
The Mixing Transition in Turbulent Flows
,”
J. Fluid Mech.
,
409
, pp.
69
98
.10.1017/S0022112099007946
60.
Rayle
,
R. E.
,
1949
, “
Influence of Orifice Geometry on Static Pressure Measurements
,” Master's thesis,
Massachusetts Institute of Technology
, Cambridge, MA (EUA).
61.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
,
1985
, “
A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND85-8240.
62.
Jorgensen
,
F. E.
,
2002
, “
How to Measure Turbulence With Hot-Wire Anemometers—A Practical Guide
,” DANTEC Dynamics, Skovlunde, Denmark, Report No. 9040U6151.
63.
Pitts
,
W. M.
, and
McCaffrey
,
B. J.
,
1985
, “
Response Behavior of Hot Wires and Films to Flows of Different Gases
,” National Institute of Standards and Technologies, NIST Interagency/Internal Report No. NBSIR
85
3203
.
64.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
65.
NIST
,
2019
, “
Nist/Sematech e-Handbook of Statistical Methods
,” NIST, Gaithersburg, MD, accessed Nov. 30, http://www.itl.nist.gov/div898/handbook/
66.
Elsner
,
J. W.
, and
Domagala
,
P.
,
1993
, “
Influence of the Hot Wire Length on Velocity Correlation Measurements
,”
J. Meas. Sci. Technol.
,
4
(
9
), pp.
1010
1015
.
67.
Cameron
,
J. D.
,
Morris
,
S. C.
,
Bailey
,
S.
, and
Smits
,
A. J.
,
2010
, “
Effects of Hot-Wire Length on the Measurement of Turbulent Spectra in Anisotropic Flows
,”
Meas. Sci. Technol.
,
21
(
10
), p.
105407
.10.1088/0957-0233/21/10/105407
68.
Sadeghi
,
H.
,
Lavoie
,
P.
, and
Pollard
,
A.
,
2018
, “
Effects of Finite Hot-Wire Spatial Resolution on Turbulence Statistics and Velocity Spectra in a Round Turbulent Free Jet
,”
Exp. Fluids
,
59
(
3
), pp.
1
10
.10.1007/s00348-017-2486-8
69.
ASME
,
2004
,
Measurement of Fluid Flow in Pipes Using Orifice, Nozzle, and Venturi
,
The American Society of Mechanical Engineers
,
New York
, Report No. MFC-3M-2004.
70.
ISO
,
2003
,
Measurement of Fluid Flow by Means of Pressure Differential Devices Inserted in Circular Cross Section Conduits Running Full - Part 2: Orifice Plates
,
International Organization for Standardization
,
Geneva, Switzerland
, Report No. BS EN ISO
5167
2
.
71.
Lienhard
, V,
J. H.
, and
Lienhard
, IV,
J. H.
,
1984
, “
Velocity Coefficients for Free Jets From Sharp-Edged Orifices
,”
ASME J. Fluids Eng.
,
106
, pp.
13
17
.10.1115/1.3242391
72.
Borutzky
,
W.
,
Barnard
,
B.
, and
Thoma
,
J.
,
2002
, “
An Orifice Flow Model for Laminar and Turbulent Conditions, Simulation Modelling Practice and Theory
,”
Elsevier Sci. B.V.
,
10
(3–4), pp.
141
152
.10.1016/S1569-190X(02)00092-8
73.
Cristancho
,
D. E.
,
Coy
,
L. A.
,
Hall
,
K. R.
, and
Iglesias-Silva
,
G. A.
,
2010
, “
An Alternative Formulation of the Standard Orifice Equation for Natural Gas
,”
Flow Meas. Instrumen.
,
21
(
3
), pp.
299
301
.10.1016/j.flowmeasinst.2010.03.003
74.
Hollingshead
,
C. L.
,
Johnson
,
M. C.
,
Barfuss
,
S. L.
, and
Spall
,
R. E.
,
2011
, “
Discharge Coefficient Performance of Venturi, Standard Concentric Orifice Plate, V-Cone and Wedge Flow Meters at Low Reynolds Numbers
,”
J. Pet. Sci. Eng.
,
78
(
3–4
), pp.
559
566
.10.1016/j.petrol.2011.08.008
75.
Muñoz-Diaz
,
E.
,
Solorio-Ordaz
,
F. J.
, and
Ascanio
,
G.
,
2012
, “
A Numerical Study of an Orifice Flowmeter
,”
Flow Meas. Instrument.
,
26
, pp.
85
92
.10.1016/j.flowmeasinst.2012.03.012
76.
Shah
,
M. S.
,
Joshi
,
J. B.
,
Kalsi
,
A. S.
,
Prasad
,
C. S. R.
, and
Shukla
,
D. S.
,
2012
, “
Analysis of Flow Through an Orifice Meter: CFD Simulation
,”
Chem. Eng. Sci.
,
71
, pp.
300
309
.10.1016/j.ces.2011.11.022
77.
Buker
,
B.
,
Lau
,
P.
, and
Tawackolian
,
K.
,
2013
, “
Reynolds Number Dependence of an Orifice Plate
,”
Flow Meas. Instrumen.
,
30
, pp.
123
132
.10.1016/j.flowmeasinst.2013.01.009
78.
Shan
,
F.
,
Liu
,
Z.
,
Liu
,
W.
, and
Tsuji
,
Y.
,
2016
, “
Effects of the Orifice to Pipe Diameter Ratio on Orifice Flows
,”
Chem. Eng. Sci.
,
152
, pp.
497
500
.10.1016/j.ces.2016.06.050
79.
Pinho
,
P. J.
, and
Pinho
,
F. T.
,
1997
, “
Pressure Drop Coefficient of Laminar Newtonian Flow in Axisymmetric Sudden Expansions
,”
Int. J. Heat Fluid Flow
,
18
(
5
), pp.
518
29
.10.1016/S0142-727X(97)80010-0
80.
Pinho
,
P. J.
,
Pinho
,
F. T.
, and
Schulte
,
A.
,
1998
, “
A General Correlation for the Local Loss Coefficient in Newtonian Axisymmetric Sudden Expansions
,”
Int. J. Heat Fluid Flow
,
19
(
6
), pp.
655
–6
60
.10.1016/S0142-727X(98)10037-1
81.
Rosa
,
S.
, and
Pinho
,
F. T.
,
2006
, “
Pressure Drop Coefficient of Laminar Newtonian Flow in Axisymmetric Diffusers
,”
Int. J. Heat Fluid Flow
,
27
(
2
), pp.
319
–3
28
.10.1016/j.ijheatfluidflow.2005.09.003
82.
Panton
,
R. L.
,
1996
,
Incompressible Flow
, 2th ed.,
Wiley
,
Hoboken, NJ
.
83.
Happel
,
J.
, and
Brener
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics
,
Springer
,
New York
.
84.
Menter
,
F. R.
,
Langtry
,
R.
, and
Volker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.10.1007/s10494-006-9047-1
85.
Aftab
,
S. M. A.
,
Mohd Rafie
,
A. S.
,
Razak
,
N. A.
, and
Ahmad
,
K. A.
,
2016
, “
Turbulence Model Selection for Low Reynolds Number Flows
,”
PLoS One
,
11
(
4
), pp.
e0153755
15
.10.1371/journal.pone.0153755
86.
SIEMENS
,
2017
,
STAR-CCM+® Documentation, Version 12.06
,
Siemens Product Lifecycle Management Software
, Plano, TX.
87.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
88.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid. Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
89.
Edwards
,
M. F.
,
Jadallah
,
M. S. M.
, and
Smith
,
R.
,
1985
, “
Head Losses in Pipe Fittings at Low Reynolds Numbers
,”
Chem. Eng. Res. Des.
,
63
(
1
), pp.
43
50
.https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8995893
You do not currently have access to this content.