Abstract

Experimental tests were carried out to investigate the vertically forced excitation effects on the subcooled boiling flow. The heated circular channel with an inner diameter of 11.9 mm was operated with various heat fluxes (q″ ≈ 14.6–41.1 kW/m2) and inlet flow conditions (vin ≈ 0.21–0.42 m/s) under various vertical forced excitations (f ≈ 0–1.63 Hz), and the time variations of void fraction, near-wall fluid temperature and pressure were recorded during the tests. Fast Fourier transform (FFT) was applied to extract the dominant frequency from the transient signals, and the variations of averages and standard deviations of test data were obtained for analysis. Under lower heat flux, lower flow, and lower void conditions, the time-averaged void fraction may decrease under forced excitations, and the dominant frequencies of void variations were identical to those of forced excitations. However in higher heat flux and higher void conditions, the void fraction can slightly increase under forced excitations, but the excitation frequencies may not be clearly observed in the void FFT plots. In general, the transient and time-averaged void fraction can be affected by forced excitations, and the void variation trends are similar to those of near-wall fluid temperature, which implies the void variations may be related to the changes of thermal boundary layer thickness. Besides, the potential variations of void fraction were estimated by assuming changes of heat transfer coefficient and/or wall superheat, which appear similar trends to the observed void variations in the present tests.

References

1.
News report, 1993, “Reasons for Scram Event of Onagawa Nuclear Power Plants”, Japan Business Press, Aug. 21.
2.
Nariai
,
H.
, and
Tanaka
,
T.
,
1994
, “
Void Fraction of Subcooled Flow Boiling Around Oscillating Heater Rod
,”
Annual Spring Meeting of Atomic Energy Society of Japan
, University of Tsukuba, Japan, Mar. 29–31, Paper No. J36.
3.
Virginia Electric and Power Company
,
2011
, “
North Anna, Units 1 and 2, Post-Earthquake Restart Readiness Determination Plan Status Update
,”
U.S. NRC
,
Washington, DC
.
4.
Chen
,
S. W.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Mori
,
M.
, and
Watanabe
,
F.
,
2017
, “
Experimental Investigation of Void Fraction Variation in Subcooled Boiling Flow Under Horizontal Forced Vibrations
,”
Int. J. Heat Mass Transfer
,
115
, pp.
954
968
.10.1016/j.ijheatmasstransfer.2017.07.125
5.
Chen
,
S. W.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Mori
,
M.
, and
Watanabe
,
F.
,
2017
, “
Experimental Investigation of Horizontal Forced-Vibration Effect on Air-Water Two-Phase Flow
,”
Int. J. Heat Fluid Flow
,
65
, pp.
33
46
.10.1016/j.ijheatfluidflow.2017.03.004
6.
Chen
,
S. W.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Mori
,
M.
, and
Watanabe
,
F.
,
2010
, “
Experimental Investigation of Vibration Effects on Subcooled Boiling Two-Phase Flow in an Annulus
,”
Seventh International Conference on Multiphase Flow (ICMF-2010)
, Tampa, FL, May 30–June 4, Paper No. 9.6.3.
7.
Chen
,
S. W.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Mori
,
M.
, and
Watanabe
,
F.
,
2014
, “
Experimental Study of Adiabatic Two-Phase Flow in an Annular Channel Under Low-Frequency Vibration
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
032501
.10.1115/1.4025726
8.
Hibiki
,
T.
, and
Ishii
,
M.
,
1998
, “
Effect of Flow-Induced Vibration on Local Flow Parameters of Two-Phase Flow
,”
Nucl. Eng. Des.
,
185
(
2–3
), pp.
113
125
.10.1016/S0029-5493(98)00241-6
9.
Lee
,
J. D.
,
Chen
,
S. W.
, and
Pan
,
C.
,
2016
, “
The Effect of External Vertical Acceleration on the Dynamic Behaviors of a Single Nuclear-Coupled Boiling Channel
,”
Nucl. Eng. Des.
,
301
, pp.
264
278
.10.1016/j.nucengdes.2016.03.017
10.
Lee
,
J. D.
,
Lin
,
Y. G.
,
Chen
,
S. W.
, and
Pan
,
C.
,
2016
, “
The Influence of Void-Reactivity Feedback on the Bifurcation Phenomena and Nonlinear Characteristics of a Single Nuclear-Coupled Boiling Channel
,”
Ann. Nucl. Energy
,
94
, pp.
814
825
.10.1016/j.anucene.2016.04.044
11.
Lee
,
J. D.
,
Lin
,
Y. G.
,
Chen
,
S. W.
, and
Pan
,
C.
,
2018
, “
A Methodology to Investigate the Effect of Vertical Seismic Acceleration on the Qualitative Dynamic Behaviors of a Natural Circulation Loop With Parallel Nuclear-Coupled Boiling Channels
,”
Ann. Nucl. Energy
,
112
, pp.
289
306
.10.1016/j.anucene.2017.10.009
12.
Satou
,
A.
,
Watanabe
,
T.
,
Maruyama
,
Y.
, and
Nakamura
,
H.
,
2011
, “
Neutron-Coupled Thermal Hydraulic Calculation of BWR Under Seismic Acceleration
,”
Prog. Nucl. Sci. Technol.
,
2
(
0
), pp.
120
124
.10.15669/pnst.2.120
13.
Chen
,
S. W.
,
Chang
,
Y. H.
,
Lin
,
H. J.
,
Ruan
,
P. S.
,
Cheng
,
Y. S.
,
Lee
,
J. D.
,
Wang
,
J. R.
, and
Shih
,
C.
,
2018
, “
Analysis of Transient Pressure and Temperature Variations in a Subcooled Boiling Channel Under Forced Vertical Excitations
,” Seventh IEEE International Symposium on Next-Generation Electronics (
ISNE 2018
), Taipei, Taiwan, May 7–9, Paper No. 8043.10.1109/ISNE.2018.8394729
14.
Chen
,
S. W.
,
Lin
,
M. S.
,
Kuo
,
F. J.
,
Chai
,
M. L.
,
Liu
,
S. Y.
,
Lee
,
J. D.
, and
Pei
,
B. S.
,
2017
, “
Experimental Investigation and Identification of the Transition Boundary of Churn and Annular Flows Using Multi-Range Differential Pressure and Conductivity Signals
,”
Appl. Therm. Eng.
,
114
, pp.
1275
1286
.10.1016/j.applthermaleng.2016.09.139
15.
Lin
,
M. S.
,
Chen
,
S. W.
,
Kuo
,
F. J.
,
Cheng
,
Y. S.
,
Ruan
,
P. S.
,
Hsu
,
Y. M.
,
Lee
,
J. D.
, and
Pei
,
B. S.
,
2020
, “
Experimental Investigation for Flow Regime Identification Using Probability Density Function of Void Fraction Signals
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061404
.10.1115/1.4046372
16.
Chen
,
S. W.
,
Ruan
,
P. S.
,
Lin
,
M. S.
,
Yu
,
Y. C.
,
Lee
,
J. D.
,
Yang
,
J. H.
,
Lin
,
H. T.
,
Wang
,
J. R.
, and
Pei
,
B. S.
,
2020
, “
Experimental Investigation on Local/Global Void Distribution of Air-Water Two-Phase Flow in a 3 × 3 Rod Bundle Channel Under Low-Flow Conditions
,”
Int. J. Heat Fluid Flow
,
85
(
2020
), p.
108623
.10.1016/j.ijheatfluidflow.2020.108623
17.
Chen
,
S. W.
,
Macke
,
C.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Liu
,
Y.
,
Ju
,
P.
,
Sharma
,
S.
,
Kondo
,
Y.
,
Kawamizu
,
T.
,
Yoshimoto
,
T.
,
Kagawa
,
S.
, and
Tanimoto
,
K.
,
2016
, “
Experimental Study of Horizontal Bubble Plume With CFD Benchmarking
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111301
.10.1115/1.4033560
18.
Chen
,
S. W.
, and
Lee
,
J. D.
,
2017
, “
Sec. 3.1.2: Seismic Effect on LWR Operating Safety and Heat/Fluid Flow Stability
,”
106 Joint Final Report of Study of Enhancement of Nuclear Energy Technology and Safety Analysis, Atomic Energy Council of R.O.C., New Taipei City, Taiwan
, pp.
36
82
(in Chinese).
19.
Chen
,
S. W.
,
Liu
,
Y.
,
Hibiki
,
T.
,
Ishii
,
M.
,
Yoshida
,
Y.
,
Kinoshita
,
I.
,
Murase
,
M.
, and
Mishima
,
K.
,
2012
, “
Experimental Study of Air-Water Two-Phase Flow in an 8 x 8 Rod Bundle Under Pool Condition for One-Dimensional Drift-Flux Analysis
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
168
181
.10.1016/j.ijheatfluidflow.2011.09.012
20.
Eesa
,
M.
,
2009
, “
CFD Studies of Complex Fluid Flows in Pipes
,” Ph.D. Thesis,
The University of Birmingham
,
Birmingham
, pp.
120
176
.
21.
Virginia Electric and Power Company (Dominion)
,
2011
, “
Summary of Excerpted Portions of the Root Cause Evaluation - Dual Unit Trip Following Magnitude 5.8 Earthquake
,” Virginia Electric and Power Company, Rev. 1, Richmond, VA, Report No. RCE 001061. https://www.nrc.gov/docs/ML1129/ML11290A170.pdf
22.
Shioyama
,
T.
, and
Ohtomi
,
K.
,
1990
, “
Pressure Fluctuation and Behavior of Vapor Bubbles for a One-Component Two-Phase Flow in a Vertical Tube, Induced by Longitudinal Excitation
,”
H0977AA, Vol.
99
, pp. 433–440.
23.
Ishii
,
M.
, and
Hibiki
,
T.
,
2010
,
Thermo-Fluid Dynamics of Two-Phase Flow
, 2nd ed.,
Springer
, New York.
24.
Zuber
,
N.
, and
Findlay
,
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
453
468
.10.1115/1.3689137
25.
Ishii
,
1977
, “
One-Dimensional Drift–Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes
,” Argonne National Laboratory, Lemont, IL, Report No. ANL-77-47.
26.
Hibiki
,
T.
, and
Ishii
,
M.
,
2003
, “
One-Dimensional Drift–Flux Model for Two-Phase Flow in a Large Diameter Pipe
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1773
1790
.10.1016/S0017-9310(02)00473-8
27.
Lee
,
Y. H.
, and
Chang
,
S. H.
,
2003
, “
The Effect of Vibration on Critical Heat Flux in a Vertical Round Tube
,”
J. Nucl. Sci. Technol.
,
40
(
10
), pp.
734
743
.10.1080/18811248.2003.9715414
28.
Lee
,
Y. H.
,
Kim
,
D. H.
, and
Chang
,
S. H.
,
2004
, “
An Experimental Investigation on the Critical Heat Flux Enhancement by Mechanical Vibration in Vertical Round Tube
,”
Nucl. Eng. Des.
,
229
(
1
), pp.
47
58
.10.1016/j.nucengdes.2003.11.015
29.
Takahashi
,
K.
, and
Endoh
,
K.
,
1990
, “
A New Correlation Method for the Effect of Vibration on Forced-Convection Heat Transfer
,”
J. Chem. Eng. Jpn.
,
23
(
1
), pp.
45
50
.10.1252/jcej.23.45
30.
Fand
,
R. M.
, and
Kaye
,
J.
,
1961
, “
The Influence of Sound on Free Convection From a Horizontal Cylinder
,”
ASME J. Heat Transfer
,
83
(
2
), pp.
133
143
.10.1115/1.3680494
31.
Sinha
,
G. K.
, and
Srivastava
,
A.
,
2020
, “
Whole Field Measurements to Quantify the Thermal Impact of Single Vapor Bubble Under Nucleate Flow Boiling Regime
,”
Int. J. Heat Mass Transfer
,
157
, p.
119932
.10.1016/j.ijheatmasstransfer.2020.119932
32.
Sinha
,
G. K.
,
Mahimkar
,
S.
, and
Srivastava
,
A.
,
2019
, “
Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
238
257
.10.1016/j.expthermflusci.2019.02.018
33.
Sinha
,
G. K.
, and
Srivastava
,
A.
,
2020
, “
Experiments to Compare the Dynamics and Thermal Impact of Single Vapor Bubble Subjected to Upward and Downward Flow Boiling Configurations
,”
Exp. Heat Transfer
,
33
(
6
), pp.
487
509
.10.1080/08916152.2019.1662518
You do not currently have access to this content.