Abstract

As a specific radial flow pump, the regenerative flow pump (RFP) usually has a low efficiency. In this study, in order to explore the matching mechanism, three cases with various matching relations were investigated by the methods of theoretical calculation, computational fluids dynamics (CFD) simulation, and experiment test. The results illustrate that the theoretical prediction, numerical simulation, and experimental data are in good agreement. Furthermore, when the matching relation expressed by a ratio of the channel's and blade's radial length is equal to 1, the geometrical profiles of RFP can well guide the circulation flow into the channel at large radii and into the impeller at small radii, forming intense longitudinal vortex. The steady, strong exchange flow is characterized by the inflow and outflow regions approximately half of the isosurface. The axial vortex motion without apparent flow separation and irregular flow is observed in the impeller, a low velocity annulus exists in the medium radii of the impeller without other distinct velocity clouds, and a low velocity strip and a high velocity annulus in the channel are, respectively, performed along the blade's pressure surface and the channel's outer radii. All of this corresponds to the best pump's performance and the largest efficiency of the impeller and channel. This work promotes a systematical understanding of the matching mechanism between impeller and flow channel in the RFP and could provide some reference for the design and performance optimization for RFP.

References

1.
Francis
,
J. Q.
,
Matthew
,
S.
, and
Armin
,
B.
,
2011
, “
A One-Dimension Numerical Model for the Momentum Exchange in Regenerative Pumps
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), pp.
1316
1326
. 10.1115/1.4002890
2.
Badami
,
M.
, and
Mura
,
M.
,
2010
, “
Theoretical Model With Experimental Validation of a Regenerative Blower for Hydrogen Recirculation in a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
51
(
3
), pp.
553
560
.10.1016/j.enconman.2009.10.022
3.
Badami
,
M.
, and
Mura
,
M.
,
2011
, “
Setup and Validation of a Regenerative Compressor Model Applied to Different Devices
,”
Energy Convers. Manage.
,
52
(
5
), pp.
2157
2164
.10.1016/j.enconman.2010.10.044
4.
Badami
,
M.
, and
Mura
,
M.
,
2012
, “
Leakage Effects on the Performance Characteristics of a Regenerative Blower for the Hydrogen Recirculation of a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
55
, pp.
20
25
.10.1016/j.enconman.2011.10.002
5.
Badami
,
M.
, and
Mura
,
M.
,
2012
, “
Comparison Between 3D and 1D Simulations of a Regenerative Blower for Fuel Cell Applications
,”
Energy Convers. Manage.
,
55
, pp.
93
100
.10.1016/j.enconman.2011.10.003
6.
Choi
,
W. C.
,
Yoo
,
I. S.
,
Park
,
M. R.
, and
Chung
,
M. K.
,
2013
, “
Experimental Study on the Effect of Blade Angle on Regenerative Pump Performance
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
5
), pp.
585
592
.10.1177/0957650913487731
7.
Mosshammer
,
M.
,
Benigni
,
H.
,
Jaberg
,
H.
, and
Konrad
,
J.
,
2019
, “
Maximum Efficiency Despite Lowest Specific Speed—Simulation and Optimisation of a Side Channel Pump
,”
Int. J. Turbomach. Propul. Power
,
4
(
2
), p.
6
.10.3390/ijtpp4020006
8.
Fleder
,
A.
, and
BÖhle
,
M.
,
2015
, “
A Systematical Study of the Influence of Blade Length, Blade Width and Side Channel Height on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121102
.10.1115/1.4030897
9.
Zhang
,
F.
,
Appiah
,
D.
,
Zhang
,
J. F.
,
Yuan
,
S. Q.
,
Osman
,
M. K.
, and
Chen
,
K.
,
2018
, “
Transient Flow Characterization in Energy Conversion of a Side Channel Pump Under Different Blade Suction Angles
,”
Energy
,
161
, pp.
635
648
.10.1016/j.energy.2018.07.152
10.
Li
,
Q.
,
Zhao
,
G.
,
Wu
,
C.
,
Wu
,
P.
,
Wu
,
D.
, and
Guo
,
C.
,
2020
, “
Investigation on the Energy Exchange Characteristics of the Regenerative Flow Pump in an Automobile Fuel System
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111206
.10.1115/1.4047803
11.
Raheel
,
M. M.
, and
Engeda
,
A.
,
2005
, “
Systematic Design Approach for Radial Blade Regenerative Turbomachines
,”
Int. J. Turbomach. Propul. Power
,
21
(
5
), pp.
884
892
.10.2514/1.1426
12.
Francis
,
J. Q.
,
Thomas
,
S.
, and
Armin
,
B.
,
2012
, “
Design Study of a Regenerative Pump Using One-Dimensional and Three-Dimensional Numerical Techniques
,”
Eur. J. Mech. B
,
31
, pp.
181
187
.10.1016/j.euromechflu.2011.06.003
13.
Lee
,
K. Y.
,
Choi
,
Y. S.
, and
Jeong
,
K. H.
,
2010
, “
Design of Side Channel Type Regenerative Blower
,”
AIP Conf. Proc.
,
1225
(
1
), pp.
704
711
.10.1063/1.3464919
14.
Gong
,
R. Z.
,
Wang
,
H. J.
,
Chen
,
L. X.
,
Li
,
D. Y.
,
Zhang
,
H. C.
, and
Wei
,
X. Z.
,
2013
, “
Application of Entropy Production Theory to Hydro-Turbine Hydraulic Analysis
,”
Sci. China Technol. Sci.
,
56
(
7
), pp.
1636
1643
.10.1007/s11431-013-5229-y
15.
Zhang
,
F.
,
Yuan
,
S. Q.
,
Wei
,
X. Y.
, and
Chen
,
K.
,
2018
, “
Study on Flow Loss Characteristics of Side Channel Pump Based on Entropy Production
,”
J. Mech. Eng.
,
54
(
22
), pp.
137
144
(in Chinese).10.3901/JME.2018.22.137
16.
Zhang
,
F.
,
Appiah
,
D.
,
Hong
,
F.
,
Zhang
,
J. F.
,
Yuan
,
S. Q.
,
Adu-Poku
,
K. A.
, and
Wei
,
X., Y.
,
2020
, “
Energy Loss Evaluation in a Side Channel Pump Under Different Wrapping Angles Using Entropy Production Method
,”
Int. Commun. Heat Mass Transfer
,
113
, p.
104526
.10.1016/j.icheatmasstransfer.2020.104526
17.
Wang
,
Y. F.
,
Zhang
,
F.
,
Yuan
,
S. Q.
,
Chen
,
K.
,
Wei
,
X. Y.
, and
Appiah
,
D.
,
2020
, “
Effect of URANS and Hybrid RANS-Large Eddy Simulation Turbulence Models on Unsteady Turbulent Flows Inside a Side Channel Pump
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061503
.10.1115/1.4045995
18.
Fleder
,
A.
, and
BÖhle
,
M.
,
2019
, “
A Systematical Study of the Influence of Blade Number on the Performance of a Side Channel Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p.
111109
.10.1115/1.4043166
19.
Hironori
,
H.
,
Matsumoto
,
S.
,
Tsujimoto
,
Y.
,
Sakagami
,
M.
, and
Tanaka
,
S.
,
2009
, “
Effect of Internal Flow in Symmetric and Asymmetric Micro Regenerative Pump Impellers on Their Pressure Performance
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
72
79
.10.5293/IJFMS.2009.2.1.072
20.
Nejadrajabali
,
J.
,
Riasi
,
A.
, and
Nourbakhsh
,
S. A.
,
2016
, “
Flow Pattern Analysis and Performance Improvement of Regenerative Flow Pump Using Blade Geometry Modification
,”
Int. J. Rotating Mach.
,
2016
, pp.
1
16
.10.1155/2016/8628467
21.
Zhang
,
F.
,
Fleder
,
A.
,
BÖhle
,
M.
, and
Yuan
,
S. Q.
,
2016
, “
Effect of Suction Side Blade Profile on the Performance of a Side Channel Pump
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp.
586
597
.10.1177/0957650916649329
22.
Nejad
,
J.
,
Riasi
,
A.
, and
Nourbakhsh
,
A.
,
2017
, “
Parametric Study and Performance Improvement of Regenerative Flow Pump Considering the Modification in Blade and Casing Geometry
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
8
), pp.
1887
1906
.10.1108/HFF-03-2016-0088
23.
Appiah
,
D.
,
Zhang
,
F.
,
Yuan
,
S. Q.
, and
Osman
,
M. K.
,
2018
, “
Effects of the Geometrical Conditions on the Performance of a Side Channel Pump: A Review
,”
Int. J. Energy Res.
,
42
(
2
), pp.
416
428
.10.1002/er.3803
24.
BÖhle
,
M.
, and
Müller
,
T.
,
2009
, “
Evaluation of the Flow Inside a Side Channel Pump by the Application of an Analytical Model and CFD
,”
ASME
Paper No. FEDSM2009-78023.10.1115/FEDSM2009-78023
25.
Pfleiderer
,
C.
,
1955
,
Die Kreiselpumpen fuer Fluessigkeiten und Gase
,
Springer Verlag
,
dritte Auflage, Berlin
.
26.
Surek
,
D.
,
1997
, “
Influence of Geometry Parameters on the Operating Behavior of Side Channel Pumps
,”
Forsch. Ingenieurwes.
,
63
(
7–8
), pp.
235
253
.10.1007/PL00010756
27.
Grabow
,
G.
,
1993
, “
The Extended Cordier Diagram for Fluid Power and Internal Combustion Engines
,”
Freiberger Forschungshefte, A
, Vol.
830
,
Deutscher Verlag Für Grundstoffindustrie
,
Leipzig/Stuttgart, Germany
.
You do not currently have access to this content.