Abstract

The objective of this paper is to reveal the attenuation characteristics of a shock wave after optical breakdown in water, with laser pulses of 12-ns duration. A high time-resolved shadowgraph method is applied to capture the temporal evolutions of the cavitation bubble wall and shock wave. The experiments are carried out on a single bubble generated far away from the free surface and the rigid walls with laser pulse energies of 22 mJ, 45 mJ, and 60 mJ. The results show that a high, time-resolved, wave front velocity of the shock wave is identified, and the maximum velocity can reach up to around 4000 m/s. An asymmetric shock wave is observed at the very start of the bubble expansion stage, and the process of the sharp attenuation of wave front velocity down to sound velocity is accomplished within 310 ns. The possible relationship of the cavitation bubble and the shock wave is discussed and a prediction model, using the maximum bubble radius and the corresponding time calculated by the Gilmore model, is proposed to calculate the location of the wave front.

References

1.
Philipp
,
A.
, and
Lauterborn
,
W.
,
1998
, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
,
361
, pp.
75
116
.10.1017/S0022112098008738
2.
Melissaris
,
T.
,
Bulten
,
N.
, and
Terwisga
,
T. V.
,
2019
, “
On the Applicability of Cavitation Erosion Risk Models With a URANS Solver
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101104
.10.1115/1.4043169
3.
Jian
,
W.
,
Petkovsek
,
M.
,
Houlin
,
L.
,
Matevz
,
D.
, and
Brane
,
S.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051302
.10.1115/1.4029533
4.
Bilus
,
I.
,
Hocevar
,
M.
,
Dular
,
M.
, and
Lesnik
,
L.
,
2020
, “
Numerical Prediction of Various Cavitation Erosion Mechanisms
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041402
.10.1115/1.4045365
5.
Dular
,
M.
, and
Petkovsek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion—Coupling High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
359
370
.10.1016/j.expthermflusci.2015.06.001
6.
Tagawa
,
Y.
,
Yamamoto
,
S.
,
Hayasaka
,
K.
, and
Kameda
,
M.
,
2016
, “
On Pressure Impulse of a Laser-Induced Underwater Shock Wave
,”
J. Fluid Mech.
,
808
, pp.
5
18
.10.1017/jfm.2016.644
7.
Lauterborn
,
W.
, and
Kurz
,
T.
,
2010
, “
Physics of Bubble Oscillations
,”
Rep. Prog. Phys.
,
73
(
10
), p.
106501
.10.1088/0034-4885/73/10/106501
8.
Lauterborn
,
W.
, and
Vogel
,
A.
,
2013
, “
Shock Wave Emission by Laser Generated Bubbles
,” Bubble Dynamics and Shock Waves, Springer, Berlin, pp.
67
103
.
9.
Bai
,
L. X.
,
Yan
,
J. C.
,
Zeng
,
Z. J.
, and
Ma
,
Y. H.
,
2020
, “
Cavitation in Thin Liquid Layer: A Review
,”
Ultrason. Sonochem.
,
66
, p.
105092
.10.1016/j.ultsonch.2020.105092
10.
Požar
,
T.
, and
Petkovsek
,
R.
,
2020
, “
Cavitation Induced by Shock Wave Focusing in Eye-Like Experimental Configurations
,”
Biomed. Opt. Express
,
11
(
1
), pp.
432
447
.10.1364/BOE.11.000432
11.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
12.
Li
,
S. C.
,
2000
,
Cavitation of Hydraulic Machinery
,
Imperial College Press
,
London
.
13.
Vogel
,
A.
,
Busch
,
S.
, and
Parlitz
,
U.
,
1996
, “
Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water
,”
J. Acoust. Soc. Am.
,
100
(
1
), pp.
148
165
.10.1121/1.415878
14.
Juhasz
,
T.
,
Hu
,
X. H.
,
Turi
,
L.
, and
Bor
,
Z.
,
1994
, “
Dynamics of Shock Waves and Cavitation Bubbles Generated by Picosecond Laser Pulses in Corneal Tissue and Water
,”
Lasers Surg. Med.
,
15
(
1
), pp.
91
98
.10.1002/lsm.1900150112
15.
Bell
,
C. E.
, and
Landt
,
J. A.
,
1967
, “
Laser-Induced High-Pressure Shock Waves in Water
,”
Phys. Rev. Lett.
,
10
(
2
), pp.
46
48
.10.1063/1.1754840
16.
Holzfuss
,
J.
,
Rüggeberg
,
M.
, and
Billo
,
A.
,
1998
, “
Shock Wave Emissions of a Sonoluminescing Bubble
,”
Phys. Rev. Lett.
,
81
(
24
), pp.
5434
5437
.10.1103/PhysRevLett.81.5434
17.
Noack
,
J.
, and
Vogel
,
A.
,
1998
, “
Single-Shot Spatially Resolved Characterization of Laser-Induced Shock Waves in Water
,”
Appl. Opt.
,
37
(
19
), pp.
4092
4099
.10.1364/AO.37.004092
18.
Pecha
,
R.
, and
Gompf
,
B.
,
2000
, “
Microimplosions: Cavitation Collapse and Shock Wave Emission on a Nanosecond Time Scale
,”
Phys. Rev. Lett.
,
84
(
6
), pp.
1328
1330
.10.1103/PhysRevLett.84.1328
19.
Taylor
,
G.
,
1950
, “
The Formation of a Blast Wave by a Very Intense Explosion—II: The Atomic Explosion of 1945
,”
Proc. R. Soc. London
,
201
(
1065
), pp.
175
186
.
20.
Doukas
,
A. G.
,
Zweig
,
A. D.
,
Frisoli
,
J. K.
,
Birngruber
,
R.
, and
Deutsch
,
T. F.
,
1991
, “
Non-Invasive Determination of Shock Wave Pressure Generated by Optical Breakdown
,”
Appl. Phys. B
,
53
(
4
), pp.
237
245
.10.1007/BF00357143
21.
Fujimoto
,
J. G.
,
Lin
,
W. Z.
,
Ippen
,
E. P.
,
Puliafito
,
C. A.
, and
Steinert
,
R. F.
,
1985
, “
Time-Resolved Studies of Nd YAG Laser-Induced Breakdown. Plasma Formation, Acoustic Wave Generation, and Cavitation
,”
Invest. Ophthalmol. Visual Sci.
, 26(12), pp.
1771
1776
.
22.
Petkovšek
,
R.
,
Movzina
,
J.
, and
Movcnik
,
G.
,
2005
, “
Optodynamic Characterization of Shock Waves After Laser-Induced Breakdown in Water
,”
Opt. Express
,
13
(
11
), pp.
4107
4112
.10.1364/OPEX.13.004107
23.
Sinibaldi
,
G.
,
Occhicone
,
A.
,
Alves Pereira
,
F.
,
Caprini
,
D.
,
Marino
,
L.
,
Michelotti
,
F.
, and
Casciola
,
C. M.
,
2019
, “
Laser Induced Cavitation: Plasma Generation and Breakdown Shockwave
,”
Phys. Fluids
,
31
(
10
), p.
103302
.10.1063/1.5119794
You do not currently have access to this content.