Abstract

This paper challenges the standard wind turbine design numerically assessing the wake and aerodynamic performance of two- and three-bladed wind turbine models implementing downwind and upwind rotor configurations, respectively. The simulations are conducted using the actuator line model (ALM) coupled with a three-dimensional Navier Stokes solver implementing the kω shear stress transport turbulence model. The sensitivity of the ALM to multiple simulation parameters is analyzed in detail and numerical results are compared against experimental data. These analyses highlight the most suitable Gaussian radius at the rotor to be equal to twice the chord length at 95% of the blade for a tip-speed ratio (TSR) of ten, while the Gaussian radius at the tower and the number of actuator points have a low incidence on the flow field computations overall. The numerical axial velocity profiles show better agreement upstream than downstream the rotor, while the discrepancies are not consistent through all the assessed operating conditions, thus highlighting that the ALM parameters are also dependent on the wind turbine's operating conditions rather than being merely geometric parameters. Particularly, for the upwind three-bladed wind turbine model, the accuracy of the total thrust computations improves as the TSR increases, while the least accurate wake predictions are found for its design TSR. Finally, when comparing both turbine models, an accurate representation of the downwind configuration is observed as well as realistic power extraction estimates. Indeed, the results confirm that rotors with fewer blades are more suitable to operate at high TSRs.

References

1.
Henao
,
S.
,
Benavides
,
A. G.
, and
López
,
O. D.
,
2018
, “
Downwind Two-Bladed Wind Turbine Aerodynamic Performance Evaluation Implementing Actuator Line Model
,”
ASME
Paper No. IMECE2018-86549.10.1115/IMECE2018-86549
2.
Jamieson
,
P.
,
2018
,
Innovation in Wind Turbine Design
,
Wiley
,
Hoboken, NJ
.
3.
Sørensen
,
J. N.
,
2011
, “
Aerodynamic Aspects of Wind Energy Conversion
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
427
448
.10.1146/annurev-fluid-122109-160801
4.
Schepers
,
J. G.
, and
Snel
,
H.
,
2007
, “
Model Experiments in Controlled Conditions—Final Report
,” Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands, Report No. ECN-E-07-042.
5.
Snel
,
H.
,
Schepers
,
J. G.
, and
Montgomerie
,
B.
,
2007
, “
The Mexico Project (Model Experiments in Controlled Conditions): The Database and First Results of Data Processing and Interpretation
,”
J. Phys.: Conf. Ser.
,
75
, p.
012014
.10.1088/1742-6596/75/1/012014
6.
Schepers
,
J. G.
,
Boorsma
,
K.
,
Cho
,
T.
,
Gomez-Iradi
,
S.
,
Schaffarczyk
,
P.
,
Jeromin
,
A.
,
Shen
,
W. Z.
,
Lutz
,
T.
,
Meister
,
K.
,
Stoevesandt
,
B.
,
Schreck
,
S.
,
Micallef
,
D.
,
Pereira
,
R.
,
Sant
,
T.
,
Madsen
,
H. A.
, and
Sørensen
,
N. N.
,
2012
, “
Analysis of Mexico Wind Tunnel Measurements
,” Energy Research Centre of the Netherlands (ECN), Petten, The Netherlands, Report No.12-004.
7.
Bechmann
,
A.
,
Sørensen
,
N. N.
, and
Zahle
,
F.
,
2011
, “
CFD Simulations of the Mexico Rotor
,”
Wind Energy
,
14
(
5
), pp.
677
689
.10.1002/we.450
8.
Réthoré
,
P.-E.
,
Sørensen
,
N.
,
Zahle
,
F.
,
Bechmann
,
A.
, and
Madsen
,
H.
,
2011
, “
Mexico Wind Tunnel and Wind Turbine Modelled in CFD
,”
AIAA
Paper No. 2011-3373.10.2514/6.2011-3373
9.
Hansen
,
M. O. L.
, and
Madsen
,
H. A.
,
2011
, “
Review Paper on Wind Turbine Aerodynamics
,”
ASME J. Fluids Eng.
,
133
(
11
), p. 114001.10.1115/1.4005031
10.
Sørensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.10.1115/1.1471361
11.
Mikkelsen
,
R.
,
2003
, “
Actuator Disc Methods Applied to Wind Turbines
,” Ph.D. thesis,
Technical University of Denmark
,
Lyngby, Denmark
.
12.
Troldborg
,
N.
,
Sørensen
,
J. N.
, and
Mikkelsen
,
R. F.
,
2009
, “
Actuator Line Modeling of Wind Turbine Wakes
,” Ph.D. thesis,
Technical University of Denmark
,
Lyngby, Denmark
.
13.
Matiz-Chicacausa
,
A.
, and
Lopez
,
O. D.
,
2018
, “
Full Downwind Turbine Simulations Using Actuator Line Method
,”
Modell. Simul. Eng.
,
2018
, pp.
1
10
.10.1155/2018/2536897
14.
Jha
,
P.
,
Churchfield
,
M.
,
Moriarty
,
P.
, and
Schmitz
,
S.
,
2013
, “
Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes
,”
AIAA
Paper No. 2013-0608.10.2514/6.2013-608
15.
Rocchio
,
B.
,
Ciri
,
U.
,
Salvetti
,
M. V.
, and
Leonardi
,
S.
,
2020
, “
Appraisal and Calibration of the Actuator Line Model for the Prediction of Turbulent Separated Wakes
,”
Wind Energy
,
23
(
5
), pp.
1231
1248
.10.1002/we.2483
16.
Martínez-Tossas
,
L. A.
, and
Meneveau
,
C.
,
2019
, “
Filtered Lifting Line Theory and Application to the Actuator Line Model
,”
J. Fluid Mech.
,
863
, pp.
269
292
.10.1017/jfm.2018.994
17.
Boojari
,
M.
,
Mahmoodi
,
E.
, and
Khanjari
,
A.
,
2019
, “
Wake Modelling Via Actuator-Line Method for Exergy Analysis in OpenFOAM
,”
Int. J. Green Energy
,
16
(
11
), pp.
797
810
.10.1080/15435075.2019.1641101
18.
Ma
,
Z.
,
Lei
,
L.
,
Dowell
,
E.
, and
Zeng
,
P.
,
2020
, “
An Experimental Study on the Actuator Line Method With Anisotropic Regularization Kernel
,”
Energies
,
13
(
4
)feb, p.
977
.10.3390/en13040977
19.
Ravensbergen
,
M.
,
Mohamed
,
A. B.
, and
Korobenko
,
A.
,
2020
, “
The Actuator Line Method for Wind Turbine Modelling Applied in a Variational Multiscale Framework
,”
Comput. Fluids
,
201
, p.
104465
.10.1016/j.compfluid.2020.104465
20.
Churchfield
,
M.
,
Lee
,
S.
, and
Moriarty
,
P.
,
2012
, “Overview of the Simulator for Wind Farm Application (SOWFA), ”
Technical Report
, NREL, Golden, CO.https://www.nrel.gov/wind/nwtc/assets/pdfs/sowfa-webinar.pdf
21.
2015
, “
OpenFOAM v2.4.0. Tech. rep
,” The OpenFOAM Foundation, Mar.
22.
Bertagnolio
,
F.
,
Sørensen
,
N. N.
,
Johansen
,
J.
, and
Fuglsang
,
P.
,
2001
, “
Wind Turbine Airfoil Catalogue
,” Technical Report, Risø National Laboratory, Roskilde, Denmark, Report No. RISO-R-1280(EN).
23.
Timmer
,
W.
,
2009
, “
An Overview of NACA 6-Digit Airfoil Series Characteristics With Reference to Airfoils for Large Wind Turbine Blades
,”
AIAA
Paper No. 2009-268.10.2514/6.2009-268
24.
Anderson
,
J. D.
,
2010
,
Fundamentals of Aerodynamics
,
McGraw-Hill Education
,
New York
.
25.
Jha
,
P. K.
,
Churchfield
,
M. J.
,
Moriarty
,
P. J.
, and
Schmitz
,
S.
,
2014
, “
Guidelines for Volume Force Distributions Within Actuator Line Modeling of Wind Turbines on Large-Eddy Simulation-Type Grids
,”
ASME J. Sol. Energy Eng.
,
136
(
3
), p.
031003
.10.1115/1.4026252
26.
Nathan
,
J.
,
Forsting
,
A. R. M.
,
Troldborg
,
N.
, and
Masson
,
C.
,
2017
, “
Comparison of OpenFOAM and EllipSys3d Actuator Line Methods With (NEW) Mexico Results
,”
J. Phys.: Conf. Ser.
,
854
, p.
012033
.10.1088/1742-6596/854/1/012033
27.
Hau
,
E.
,
2005
,
Wind Turbines
,
Springer-Verlag GmbH
,
Berlin
.
You do not currently have access to this content.