Abstract

A novel positive displacement, high pressure, vertical axis wind pump (HP-VAWP) was evaluated for the application of stand-alone high-pressure reverse-osmosis desalination and drip irrigation systems. The direct interface between a vertical axis wind turbine (VAWT) and a positive displacement pump that delivers a constant liquid volume per revolution has never been studied before. Understanding the interaction between turbine and pump efficiencies, where delivery pressure is determined by back-pressure alone, is critical for efficient design. Wind tunnel experiments were conducted on a small-scale two-bladed turbine (0.4 m2 cross-sectional area) that operated on a dynamic stall principle. At these small laboratory scales, the turbine and pump peak efficiencies were relatively low (15% and 28%, respectively); nevertheless, the system produced nearly constant pressures in excess of 1.5 bar for a broad operational range. Moreover, the system exhibited a basic self-priming capability, and the turbine could easily be braked by overloading the pump. A conservative field-scale analysis of an HP-VAWP system indicated that a medium-size turbine (12.5 m2 cross-sectional area) could attain a peak efficiency of 12.9%. Realistic efficiencies greater than 20% are attainable, significantly exceeding the 4%–8% typical peak efficiency of the widely used American multibladed wind pumps. Indeed, our research indicates that an HP-VAWP system is viable and requires further development. The benefits of zero carbon emissions during operation, high relative efficiency, and easy manufacturing and maintenance render the HP-VAWP ideal for stand-alone or off-grid environments.

References

1.
Masson-Delmotte
,
V.
,
P.
,
Zhai
,
H.-O.
,
Pörtner
,
D.
,
Roberts
,
J.
,
Skea
,
P. R. S. A.
,
Pirani
,
W.
,
Moufouma-Okia
,
C.
,
Péan
,
R.
,
Pidcock
,
S.
,
Connors
,
J. B. R.
,
Matthews
,
Y.
,
Chen
,
X.
,
Zhou
,
M. I.
,
Gomis
,
E.
,
Lonnoy
,
T.
,
Tignor
,
M.
,
M.
, and
Waterfield
,
T.
,
2019
, “
IPCC, 2018: Summary for Policymakers
,” Global Warming of 1.5 °C,
World Meteorological Organization
,
Geneva, Switzerland
.
2.
WWAP (United Nations World Water Assessment Programme)
,
2014
,
The United Nations World Water Development Report 2014, Water and Energy
,
Paris, France
.
3.
Caldera
,
U.
, and
Breyer
,
C.
,
2019
, “
Assessing the Potential for Renewable Energy Powered Desalination for the Global Irrigation Sector
,”
Sci. Total Environ.
,
694
, p.
133598
.10.1016/j.scitotenv.2019.133598
4.
Isaka
,
M.
,
2013
, “
Water Desalination Using Renewable Energy, IEA-ETSAP and IRENA Technology Policy Brief I12
,” IEA-ETSAP, Lisbon, Portugal.
5.
International Desalination Association
,
2018
,
IDA Water Security Handbook
,
International Desalination Association
,
Topsfield, MA
.
6.
Tal
,
A.
,
2018
, “
Addressing Desalination's Carbon Footprint: The Israeli Experience
,”
Water
,
10
(
2
), p.
197
.10.3390/w10020197
7.
Siddiqi
,
A.
, and
Anadon
,
L. D.
,
2011
, “
The Water-Energy Nexus in Middle East and North Africa
,”
Energy Policy
,
39
(
8
), pp.
4529
4540
.10.1016/j.enpol.2011.04.023
8.
Kim
,
J.
,
Park
,
K.
,
Yang
,
D. R.
, and
Hong
,
S.
,
2019
, “
A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants
,”
Appl. Energy
,
254
, p.
113652
.10.1016/j.apenergy.2019.113652
9.
Nayar
,
K. G.
, and
Lienhard
,
J. H.
,
2020
, “
Brackish Water Desalination for Greenhouse Agriculture: Comparing the Costs of RO, CCRO, EDR, and Monovalent-Selective EDR
,”
Desalination
,
475
, p.
114188
.10.1016/j.desal.2019.114188
10.
Deshmukh
,
A.
,
Boo
,
C.
,
Karanikola
,
V.
,
Lin
,
S.
,
Straub
,
A. P.
,
Tong
,
T.
,
Warsinger
,
D. M.
, and
Elimelech
,
M.
,
2018
, “
Membrane Distillation at the Water-Energy Nexus: Limits, Opportunities, and Challenges Energy
,”
Energy Environ. Sci.
,
11
, pp.
1117
1196
.
11.
Rothausen
,
S. G. S. A.
, and
Conway
,
D.
,
2011
, “
Greenhouse-Gas Emissions From Energy Use in the Water Sector
,”
Nat. Clim. Change
,
1
(
4
), pp.
210
219
.10.1038/nclimate1147
12.
Taylor
,
R.
, and
Zilberman
,
D.
,
2017
, “
Diffusion of Drip Irrigation: The Case of California
,”
Appl. Econ. Perspect. Policy
,
39
(
1
), pp.
16
40
.10.1093/aepp/ppw026
13.
Foley
,
J. P.
,
Sandell
,
G. R.
,
Szabo
,
P. M.
,
Scobie
,
M.
, and
Baillie
,
C. P.
,
2015
, “
Improving Energy Efficiency on Irrigated Australian Cotton Farms
,”
National Centre for Engineering in Agriculture
,
Toowoomba, Australia
, Benchmarking Report No. 1005371/1.
14.
Soto-García
,
M.
,
Martin-Gorriz
,
B.
,
García-Bastida
,
P. A.
,
Alcon
,
F.
, and
Martínez-Alvarez
,
V.
,
2013
, “
Energy Consumption for Crop Irrigation in a Semiarid Climate (South-Eastern Spain)
,”
Energy
,
55
, pp.
1084
1093
.10.1016/j.energy.2013.03.034
15.
Kalogirou
,
S. A.
,
2005
, “
Seawater Desalination Using Renewable Energy Sources
,”
Prog. Energy Combust. Sci.
,
31
(
3
), pp.
242
281
.10.1016/j.pecs.2005.03.001
16.
Ma
,
Q.
, and
Lu
,
H.
,
2011
, “
Wind Energy Technologies Integrated With Desalination Systems: Review and State-of-the-Art
,”
Desalination
,
277
(
1–3
), pp.
274
280
.10.1016/j.desal.2011.04.041
17.
Schallenberg-Rodríguez
,
J.
,
Veza
,
J. M.
, and
Blanco-Marigorta
,
A.
,
2014
, “
Energy Efficiency and Desalination in the Canary Islands
,”
Renewable Sustainable Energy Rev.
,
40
, pp.
741
748
.10.1016/j.rser.2014.07.213
18.
Saidur
,
R.
,
2010
, “
A Review on Electrical Motors Energy Use and Energy Savings
,”
Renewable Sustainable Energy Rev.
,
14
(
3
), pp.
877
898
.10.1016/j.rser.2009.10.018
19.
Argaw
,
N.
,
Foster
,
R.
, and
Ellis
,
A.
,
2003
, “
Renewable Energy for Water Pumping Applications in Rural Villages
,” National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. SR-500-30361.
20.
Aslam Bhutta
,
M. M.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Ali
,
Z.
,
Jamil
,
S. R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
.10.1016/j.rser.2011.12.004
21.
Hagen
,
L. J.
, and
Sharif
,
M.
,
1981
, “
Darrieus Wind Turbine and Pump Performance for Low-Lift Irrigation Pumping
,”
U.S. Department of Agriculture
,
Manhattan, KS
, Report No. DOE/ARS-3707-20741/81/1.
22.
Cabrera
,
P.
,
Carta
,
J. A.
,
González
,
J.
, and
Melián
,
G.
,
2018
, “
Wind-Driven SWRO Desalination Prototype With and Without Batteries: A Performance Simulation Using Machine Learning Models
,”
Desalination
435
, pp.
77
96
.10.1016/j.desal.2017.11.044
23.
Greenblatt
,
D.
,
2016
, “
Unsteady Low-Speed Wind Tunnels
,”
AIAA J.
,
54
(
6
), pp.
1817
1830
.10.2514/1.J054590
24.
Peri
,
E.
, and
Tal
,
A.
,
2020
, “
A Sustainable Way Forward for Wind Power: Assessing Turbines' Environmental Impacts Using a Holistic GIS Analysis
,”
Appl. Energy
,
279
.
25.
Miller
,
M. A.
,
Duvvuri
,
S.
,
Kelly
,
W. D.
, and
Hultmark
,
M.
,
2018
, “
Rotor Solidity Effects on the Performance of Vertical-Axis Wind Turbines at High Reynolds Numbers
,”
J. Phys.: Conf. Ser.
,
1037
, p.
052015
.10.1088/1742-6596/1037/5/052015
26.
Keisar
,
D.
,
De Troyer
,
T.
, and
Greenblatt
,
D.
,
2020
, “
Concept and Operation of a Wind Turbine Driven by Dynamic Stall
,”
AIAA J.
,
58
(
6
), pp.
2370
2376
.10.2514/1.J059487
27.
McMasters
,
J. H.
, and
Henderson
,
M. L.
,
1979
, “
Low-Speed Single-Element, Airfoil Synthesis
,”
NASA
,
Hampton, VA
, Report No. 19790015719.
28.
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2018
, “
Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021107
.10.1115/1.4037978
29.
Nesbitt
,
B.
,
2006
,
Handbook of Pumps and Pumping, 13—Installation and Maintenance
,
Elsevier in Association with Roles & Associates Ltd.
,
Oxford
.
30.
Ogawa
,
T.
,
Yoshida
,
H.
, and
Yokota
,
Y.
,
1989
, “
Development of Rotational Speed Control Systems for a Savonius-Type Wind Turbine
,”
ASME J. Fluids Eng.
,
111
(
1
), pp.
53
58
.10.1115/1.3243598
31.
Mifsud
,
M. D.
,
Sant
,
T.
, and
Farrugia
,
R. N.
,
2016
, “
Dynamic Modelling of a Large-Scale Horizontal-Axis Wind Turbine Coupled to a Hydraulic Pump
,”
Wind Eng.
,
40
(
1
), pp.
3
24
.10.1177/0309524X15624328
32.
Sohl
,
G. A.
, and
Bobrow
,
J. E.
,
1999
, “
Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem
,”
IEEE Trans. Control Syst. Technol.
,
7
(
2
), pp.
238
247
.10.1109/87.748150
33.
Zhu
,
J.
,
Huang
,
H.
, and
Shen
,
H.
,
2015
, “
Experiments and Simulations on the Nonlinear Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
12
).
34.
Fiedler
,
A. J.
, and
Tullis
,
S.
,
2009
, “
Blade Offset and Pitch Effects on a High Solidity Vertical Axis Wind Turbine
,”
Wind Eng.
,
33
(
3
), pp.
237
246
.10.1260/030952409789140955
35.
Sarai Atab
,
M.
,
Smallbone
,
A. J.
, and
Roskilly
,
A. P.
,
2016
, “
An Operational and Economic Study of a Reverse Osmosis Desalination System for Potable Water and Land Irrigation
,”
Desalination
,
397
, pp.
174
184
.10.1016/j.desal.2016.06.020
You do not currently have access to this content.