Abstract

Large eddy simulation (LES) and coupled physical laboratory-scale modeling are performed to elucidate tracer transport and particulate matter (PM) fate in a baffled clarification system. Such baffled systems are common for urban water unit operations and processes. Flow hydrodynamic indices of these systems such as short-circuiting are often examined with measurement of inert tracer transport as a surrogate for chemical or PM transport and fate. Results of this study illustrate complex interactions between turbulent flow, tracer, and various PM diameters at the system scale. PM preferential accumulation and the discordance of PM transport with respect to flow hydrodynamics are observed based on the modeling results; otherwise not practical with physical model testing. Results demonstrate that baffling can promote system tracer mixing and improve volumetric utilization by extending the mean flow path through flow separation and bifurcation. The baffle tested produced high turbulence kinetic energy near the sedimentation floor and reduced PM separation (clarification) as compared to the unbaffled system used as a control. The unbaffled system in this study yields the highest PM separation, even though significant short-circuiting occurs during the residence time distribution (RTD) of the tracer. Further analysis demonstrates the mechanistic difference between the tracer transport and the finer suspended PM as compared to larger settleable and sediment PM diameters. Results illustrate that the tracer RTD, residence time (RT) and hydraulic efficiency indices are not reliable surrogates for PM or PM-bound chemical/pathogen separation. In addition, simulations suggest a site, system or condition-specific design approach given the coupled dependence on flow and design geometry.

References

1.
Stamou
,
A. I.
,
Adams
,
E. W.
, and
Rodi
,
W.
,
1989
, “
Numerical Modeling of Flow and Settling in Primary Rectangular Clarifiers
,”
J. Hydraulic Res.
,
27
(
5
)9, pp.
665
682
.10.1080/00221688909499117
2.
Garofalo
,
G.
, and
Sansalone
,
J. J.
,
2020
, “
Modeling Annual Particulate Matter Separation and Washout by Unit Operations With CFD
,”
J. Environ. Eng.
,
146
(
1
), p.
04019101
.10.1061/(ASCE)EE.1943-7870.0001620
3.
Howard
,
A.
,
Mohseni
,
O.
,
Gulliver
,
J.
, and
Stefan
,
H.
,
2011
, “
SAFL Baffle Retrofit for Suspended Sediment Removal in Storm Sewer Sumps
,”
Water Res.
,
45
(
18
)11, pp.
5895
5904
.10.1016/j.watres.2011.08.043
4.
Zhang
,
J.
,
Tejada-Martínez
,
A. E.
,
Zhang
,
Q.
, and
Lei
,
H.
,
2014
, “
Evaluating Hydraulic and Disinfection Efficiencies of a Full-Scale Ozone Contactor Using a RANS-Based Modeling Framework
,”
Water Res.
,
52
(
4
), pp.
155
167
.10.1016/j.watres.2013.12.037
5.
Kulju
,
T.
,
Riihimäki
,
M.
,
Pääkkönen
,
T. M.
,
Vilhunen
,
O.
,
Lipiäinen
,
K.
,
Muurinen
,
E.
, and
Keiski
,
R.
,
2011
, “
Flow Modifiers for Preventing Sedimentation in Heat Exchangers
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101203
.10.1115/1.4004942
6.
Lyn
,
D. A.
, and
Rodi
,
W.
,
1990
, “
Turbulence Measurements in Model Settling Tank
,”
J. Hydraulic Eng.
,
116
(
1
)1, pp.
3
21
.10.1061/(ASCE)0733-9429(1990)116:1(3)
7.
Liu
,
X.
, and
García
,
M. H.
,
2011
, “
Computational Fluid Dynamics Modeling for the Design of Large Primary Settling Tanks
,”
J. Hydraulic Eng.
,
137
(
3
), pp.
343
355
.10.1061/(ASCE)HY.1943-7900.0000313
8.
Li
,
H.
, and
Sansalone
,
J. J.
,
2020
, “
CFD as a Complementary Tool to Benchmark Physical Testing of PM Separation by Unit Operations
,”
J. Environ. Eng.
,
146
(
11
), p.
04020122
.10.1061/(ASCE)EE.1943-7870.0001803
9.
Saeedi
,
E.
,
Behnamtalab
,
E.
, and
Salehi Neyshabouri
,
S. A. A.
,
2020
, “
Numerical Simulation of Baffle Effect on the Performance of Sedimentation Basin
,”
Water Environ. J.
,
34
(
2
), pp.
212
222
.10.1111/wej.12454
10.
Liu
,
B.
,
Ma
,
J.
,
Luo
,
L.
,
Bai
,
Y.
,
Wang
,
S.
, and
Zhang
,
J.
,
2010
, “
Two-Dimensional LDV Measurement, Modeling, and Optimal Design of Rectangular Primary Settling Tanks
,”
J. Environ. Eng.
,
136
(
5
), pp.
501
507
.10.1061/(ASCE)EE.1943-7870.0000186
11.
Imam
,
E.
,
McCorquodale
,
J. A.
, and
Bewtra
,
J. K.
,
1983
, “
Numerical Modeling of Sedimentation Tanks
,”
J. Hydraulic Eng.
,
109
(
12
), pp.
1740
1754
.10.1061/(ASCE)0733-9429(1983)109:12(1740)
12.
McIntire
,
K. D.
,
Howard
,
A.
,
Mohseni
,
O.
, and
Gulliver
,
J. S.
,
2012
, “
Assessment and Recommendations for the Operation of Standard Sumps as Best Management Practices for Stormwater Treatment (Volume 2)
,” Minnesota Department of Transportation, St. Paul, MN, Report No. 573.
13.
Ahmed
,
F. H.
,
Kamel
,
A.
, and
Abdel Jawad
,
S.
,
1996
, “
Experimental Determination of the Optimal Location and Contraction of Sedimentation Tank Baffles
,”
Water, Air, Soil Pollut.
,
92
(
3–4
)12, pp.
251
271
.10.1007/BF00283562
14.
Rodi
,
W.
,
Ferziger
,
J. H.
,
Breuer
,
M.
, and
Pourquié
,
M.
,
1997
, “
Status of Large Eddy Simulation: Results of a Workshop
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
248
262
.10.1115/1.2819128
15.
Ouro
,
P.
,
Fraga
,
B.
,
Viti
,
N.
,
Angeloudis
,
A.
,
Stoesser
,
T.
, and
Gualtieri
,
C.
,
2018
, “
Instantaneous Transport of a Passive Scalar in a Turbulent Separated Flow
,”
Environ. Fluid Mech.
,
18
(
2
), pp.
487
513
.10.1007/s10652-017-9567-3
16.
Yang
,
K. S.
, and
Ferziger
,
J. H.
,
1993
, “
Large-Eddy Simulation of Turbulent Obstacle Flow Using a Dynamic Subgrid-Scale Model
,”
AIAA J.
,
31
(
8
), pp.
1406
1413
.10.2514/3.49081
17.
Kim
,
D.
,
Research Associate
,
P.
,
Stoesser
,
T.
,
Kim
,
J-h.
, and
Professor
,
A.
,
2013
, “
The Effect of Baffle Spacing on Hydrodynamics and Solute Transport in Serpentine Contact Tanks
,”
J. Hydraulic Res.
,
51
(
5
), pp.
558
568
.10.1080/00221686.2013.777681
18.
Fröhlich
,
J.
,
Mellen
,
C. P.
,
Rodi
,
W.
,
Temmerman
,
L.
, and
Leschziner
,
M. A.
,
2005
, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
526
(
3
), pp.
19
66
.10.1017/S0022112004002812
19.
Kim
,
D.
,
Kim
,
D.-I.
,
Kim
,
J.-H.
, and
Stoesser
,
T.
,
2010
, “
Large Eddy Simulation of Flow and Tracer Transport in Multichamber Ozone Contactors
,”
J. Environ. Eng.
,
136
(
1
), pp.
22
31
.10.1061/(ASCE)EE.1943-7870.0000118
20.
Wang
,
H.
, and
A. Falconer
,
R.
,
1998
, “
Simulating Disinfection Processes in Chlorine Contact Tanks Using Various Turbulence Models and High-Order Accurate Difference Schemes
,”
Water Res.
,
32
(
5
), pp.
1529
1543
.10.1016/S0043-1354(98)80014-6
21.
Li
,
H.
, and
Sansalone
,
J. J.
,
2020
, “
CFD Model of PM Sedimentation and Resuspension in Urban Water Clarification
,”
J. Environ. Eng.
,
146
(
3
), p.
04019118
.10.1061/(ASCE)EE.1943-7870.0001649
22.
Asgharzadeh
,
H.
,
Firoozabadi
,
B.
, and
Afshin
,
H.
,
2011
, “
Experimental Investigation of Effects of Baffle Configurations on the Performance of a Secondary Sedimentation Tank
,”
Sci. Iranica
,
18
(
4
), pp.
938
949
.10.1016/j.scient.2011.07.005
23.
Angeloudis
,
A.
,
Stoesser
,
T.
,
Gualtieri
,
C.
, and
Falconer
,
R. A.
,
2016
, “
Contact Tank Design Impact on Process Performance
,”
Environ. Model. Assess.
,
21
(
5
), pp.
563
576
.10.1007/s10666-016-9502-x
24.
Khan
,
S.
,
Melville
,
B. W.
,
Khan
,
M. M.
,
Shoaib
,
M.
, and
Shamseldin
,
A.
,
2017
, “
Effect of Baffles on the Hydraulic Performance of Sediment Retention Ponds
,”
Water Sci. Technol.
,
75
(
9
), pp.
1991
1996
.10.2166/wst.2016.475
25.
Nasyrlayev
,
N.
,
Kizilaslan
,
M. A.
,
Kurumus
,
A. T.
,
Demirel
,
E.
, and
Aral
,
M. M.
,
2020
, “
A Perforated Baffle Design to Improve Mixing in Contact Tanks
,”
Water
,
12
(
4
), p.
1022
.10.3390/w12041022
26.
Kim
,
D.
,
Elovitz
,
M.
,
Roberts
,
P. J.
, and
Kim
,
J.-H.
,
2010
, “
Using 3D LIF to Investigate and Improve Performance of a Multichamber Ozone Contactor
,”
J. Am. Water Works Assoc.
,
102
(
10
), pp.
61
70
.10.1002/j.1551-8833.2010.tb10207.x
27.
Garofalo
,
G.
, and
Sansalone
,
J. J.
,
2018
, “
Urban Drainage Clarifier Load-Response as a Function of Flow, Unsteadiness, and Baffling
,”
J. Environ. Eng.
,
144
(
3
), p.
04017108
.10.1061/(ASCE)EE.1943-7870.0001283
28.
Aref
,
H.
, and
Balachandar
,
S.
,
2018
,
A First Course in Computational Fluid Dynamics
,
Cambridge University Press
,
Cambridge
.
29.
Wilson
,
M. A.
,
Mohseni
,
O.
,
Gulliver
,
J. S.
,
Hozalski
,
R. M.
, and
Stefan
,
H. G.
,
2009
, “
Assessment of Hydrodynamic Separators for Storm-Water Treatment
,”
J. Hydraulic Eng.
,
135
(
5
), pp.
383
392
.10.1061/(ASCE)HY.1943-7900.0000023
30.
Pathapati
,
S.-S.
, and
Sansalone
,
J. J.
,
2009
, “
CFD Modeling of a Storm-Water Hydrodynamic Separator
,”
J. Environ. Eng.
,
135
(
4
), pp.
191
202
.10.1061/(ASCE)0733-9372(2009)135:4(191)
31.
United States Environmental Protection Agency
,
2019
, “Summary of the Clean Water Act,” accessed Oct. 18, 2019, https://www.epa.gov/laws-regulations/summary-clean-water-act/
32.
Saddoris
,
D.
,
McIntire
,
K.
,
Mohseni
,
O.
, and
Gulliver
,
J.
,
2010
, “
Hydrodynamic Separator Sediment Retention Testing
,” Minnesota Department of Transportation, St. Paul, MN, Report No. 534.
33.
Fischer
,
P.
, and
Mullen
,
J.
,
2001
, “
Stabilisation Par Filtrage Pour la Méthode Des Éléments Spectraux
,”
Comptes Rendus de L'Academie Des Sciences - Series I: Mathematics
,
332
(
3
), pp.
265
270
.10.1016/S0764-4442(00)01763-8
34.
Fischer
,
P. F.
,
1997
, “
An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
133
(
1
)5, pp.
84
101
.10.1006/jcph.1997.5651
35.
Lai
,
J. K.
,
Merzari
,
E.
,
Hassan
,
Y. A.
,
Fischer
,
P.
, and
Marin
,
O.
,
2020
, “
Verification and Validation of Large Eddy Simulation With Nek5000 for Cold Leg Mixing Benchmark
,”
Nucl. Eng. Des.
,
358
, p.
110427
.10.1016/j.nucengdes.2019.110427
36.
Yildiz
,
M. A.
,
Yuan
,
H.
,
Merzari
,
E.
, and
Hassan
,
Y.
,
2020
, “
Numerical Simulation of Isothermal Flow Across Slant Five-Tube Bundle With Spectral Element Method Code Nek5000
,”
Nucl. Technol.
,
206
(
2
), pp.
296
306
.10.1080/00295450.2019.1626176
37.
Hayat
,
I.
,
Chatterjee
,
T.
,
Liu
,
H.
,
Peet
,
Y. T.
, and
Chamorro
,
L. P.
,
2019
, “
Exploring Wind Farms With Alternating Two- and Three-Bladed Wind Turbines
,”
Renewable Energy
,
138
(
8
), pp.
764
774
.10.1016/j.renene.2019.01.123
38.
Zeng
,
L.
,
Balachandar
,
S.
, and
Fischer
,
P.
,
2005
, “
Wall-Induced Forces on a Rigid Sphere at Finite Reynolds Number
,”
J. Fluid Mech.
,
536
(
8
), pp.
1
25
.10.1017/S0022112005004738
39.
Zeng
,
L.
,
Najjar
,
F.
,
Balachandar
,
S.
, and
Fischer
,
P.
,
2009
, “
Forces on a Finite-Sized Particle Located Close to a Wall in a Linear Shear Flow
,”
Phys. Fluids
,
21
(
3
), p.
033302
.10.1063/1.3082232
40.
Liu
,
K.
,
Zgheib
,
N.
, and
Balachandar
,
S.
,
2020
, “
On the Spreading of Non-Canonical Thermals From Direct Numerical Simulations
,”
Phys. Fluids
,
32
(
2
), p.
026602
.10.1063/1.5138981
41.
Zwick
,
D.
, and
Balachandar
,
S.
,
2020
, “
A Scalable Euler-Lagrange Approach for Multiphase Flow Simulation on Spectral Elements
,”
Int. J. High Performance Comput. Appl.
,
34
(
3
), pp.
316
339
.10.1177/1094342019867756
42.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
1988
,
Spectral Methods in Fluid Dynamics
,
Springer
,
Berlin Heidelberg
.
43.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.10.1146/annurev.fluid.010908.165243
44.
Schiller
,
L.
, and
Naumann
,
Z.
,
1935
, “
A Drag Coefficient Correlation
,” Zeitschrift des Vereins Deutscher Ingenieure, 77, pp.
318
320
.
45.
Stolz
,
S.
, and
Adams
,
N. A.
,
1999
, “
An Approximate Deconvolution Procedure for Large-Eddy Simulation
,”
Phys. Fluids
,
11
(
7
), pp.
1699
1701
.10.1063/1.869867
46.
Schlatter
,
P.
,
Stolz
,
S.
, and
Kleiser
,
L.
,
2004
, “
LES of Transitional Flows Using the Approximate Deconvolution Model
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
549
558
.10.1016/j.ijheatfluidflow.2004.02.020
47.
Schlatter
,
P.
,
2005
, “
Large-Eddy Simulation of Transition and Turbulence in Wall-Bounded Shear Flow
,” Ph.D. thesis, ETH Zurich, Zürich, Switzerland.
48.
Salinas
,
J. S.
,
Cantero
,
M. I.
,
Shringarpure
,
M.
, and
Balachandar
,
S.
,
2019
, “
Properties of the Body of a Turbidity Current at Near Normal Conditions: 1. Effect of Bed Slope
,”
J. Geophys. Res.: Oceans
,
124
(
11
), pp.
7989
8016
.10.1029/2019JC015332
49.
Cantero
,
M. I.
,
Balachandar
,
S.
,
Cantelli
,
A.
,
Pirmez
,
C.
, and
Parker
,
G.
,
2009
, “
Turbidity Current With a Roof: Direct Numerical Simulation of Self-Stratified Turbulent Channel Flow Driven by Suspended Sediment
,”
J. Geophys. Res.: Oceans
,
114
(
C3
), p.
3
.10.1029/2008JC004978
50.
Van Hooff
,
T.
,
Blocken
,
B.
,
Gousseau
,
P.
, and
van Heijst
,
G. J.
,
2014
, “
Counter-Gradient Diffusion in a Slot-Ventilated Enclosure Assessed by LES and RANS
,”
Comput. Fluids
,
96
(
6
), pp.
63
75
.10.1016/j.compfluid.2014.02.020
51.
Gualtieri
,
C.
,
Angeloudis
,
A.
,
Bombardelli
,
F.
,
Jha
,
S.
, and
Stoesser
,
T.
,
2017
, “
On the Values for the Turbulent Schmidt Number in Environmental Flows
,”
Fluids
,
2
(
2
), p.
17
.10.3390/fluids2020017
52.
Özgökmen
,
T. M.
,
Fischer
,
P. F.
,
Duan
,
J.
, and
Iliescu
,
T.
,
2004
, “
Three-Dimensional Turbulent Bottom Density Currents From a High-Order Nonhydrostatic Spectral Element Model
,”
J. Phys. Oceanography
,
34
(
9
), pp.
2006
2026
.10.1175/1520-0485(2004)034<2006:TTBDCF>2.0.CO;2
53.
Özgökmen
,
T. M.
,
Fischer
,
P. F.
,
Duan
,
J.
, and
Iliescu
,
T.
,
2004
, “
Entrainment in Bottom Gravity Currents Over Complex Topography From Three-Dimensional Nonhydrostatic Simulations
,”
Geophys. Res. Lett.
,
31
(
13
), p. L13212.10.1029/2004GL02018
54.
Wu
,
X.
,
2017
, “
Inflow Turbulence Generation Methods
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
23
49
.10.1146/annurev-fluid-010816-060322
55.
Boström
,
E.
,
2015
, “Investigation of Outflow Boundary Conditions for Convection-Dominated Incompressible Fluid Flows in a Spectral Element Framework,” Master thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
56.
Celik
,
I.
, and
Rodi
,
W.
,
1988
, “
Modeling Suspended Sediment Transport in Nonequilibrium Situations
,”
J. Hydraulic Eng.
,
114
(
10
), pp.
1157
1191
.10.1061/(ASCE)0733-9429(1988)114:10(1157)
57.
Salinas
,
J. S.
,
Shringarpure
,
M.
,
Cantero
,
M. I.
, and
Balachandar
,
S.
,
2018
, “
Mixing at a Sediment Concentration Interface in Turbulent Open Channel Flow
,”
Environ. Fluid Mech.
,
18
(
1
), pp.
173
200
.10.1007/s10652-017-9521-4
58.
Durst
,
F.
,
Kikura
,
H.
,
Lekakis
,
I.
,
Jovanović
,
J.
, and
Ye
,
Q.
,
1996
, “
Wall Shear Stress Determination From Near-Wall Mean Velocity Data in Turbulent Pipe and Channel Flows
,”
Exp. Fluids
,
20
(
6
), pp.
417
428
.10.1007/BF00189380
59.
New Jersey Department of Environmental Protection
,
2013
, “
New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Hydrodynamic Sedimentation Manufactured Treatment Device
,” accessed Oct. 19, 2019, https://www.njstormwater.org/pdf/hds-protocol-1-25-13.pdf/
60.
Li
,
H.
, and
Sansalone
,
J. J.
,
2020
, “
Multi-Scale Physical Model Simulation of Particle Filtration Using Computational Fluid Dynamics
,”
J. Environ. Manage.
,
271
(
10
), p.
111021
.10.1016/j.jenvman.2020.111021
61.
ASTM International
,
2019
,
Standard Test Methods for Determining Sediment Concentration in Water Samples
,
ASTM International
,
West Conshohocken, PA
, Standard No. D3977-97(2019).
62.
Malvern Instruments Ltd.
,
2012
, “
Malvern Mastersizer 2000 Particle Size Analyzer
,” accessed Oct. 20, 2019, https://www.malvernpanalytical.com/en/support/product-support/mastersizer-range/mastersizer-2000
63.
Hinterberger
,
C.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2008
, “
2D and 3D Turbulent Fluctuations in Open Channel Flow With Re τ = 590 Studied by Large Eddy Simulation
,”
Flow, Turbul. Combust.
,
80
(
2
), pp.
225
253
.10.1007/s10494-007-9122-2
64.
Zhang
,
J.
,
Pierre
,
K. C.
, and
Tejada-Martinez
,
A. E.
,
2019
, “
Impacts of Flow and Tracer Release Unsteadiness on Tracer Analysis of Water and Wastewater Treatment Facilities
,”
J. Hydraulic Eng.
,
145
(
4
), p.
04019004
.10.1061/(ASCE)HY.1943-7900.0001569
65.
Drost
,
K.
,
Jackson
,
T.
,
Apte
,
S. V.
, and
Haggerty
,
R.
,
2012
, “
RANS Predictions of Turbulent Scalar Transport in Dead Zones of Natural Streams
,”
ASME
Paper No. FEDSM2012-72380.10.1115/FEDSM2012-72380
66.
Teixeira
,
E. C.
, and
do Nascimento Siqueira
,
R.
,
2008
, “
Performance Assessment of Hydraulic Efficiency Indexes
,”
J. Environ. Eng.
,
134
(
10
), pp.
851
859
.10.1061/(ASCE)0733-9372(2008)134:10(851)
67.
Demirel
,
E.
, and
Aral
,
M. M.
,
2018
, “
Performance of Efficiency Indexes for Contact Tanks
,”
J. Environ. Eng.
,
144
(
9
), p.
04018076
.10.1061/(ASCE)EE.1943-7870.0001431
68.
Jackson
,
T. R.
,
Haggerty
,
R.
,
Apte
,
S. V.
,
Coleman
,
A.
, and
Drost
,
K. J.
,
2012
, “
Defining and Measuring the Mean Residence Time of Lateral Surface Transient Storage Zones in Small Streams
,”
Water Resour. Res.
,
48
(
10
), p.
10
.10.1029/2012WR012096
69.
Kidanemariam
,
A. G.
, and
Uhlmann
,
M.
,
2014
, “
Interface-Resolved Direct Numerical Simulation of the Erosion of a Sediment Bed Sheared by Laminar Channel Flow
,”
Int. J. Multiphase Flow
,
67
(
12
), pp.
174
188
.10.1016/j.ijmultiphaseflow.2014.08.008
70.
Mazzuoli
,
M.
,
Kidanemariam
,
A. G.
, and
Uhlmann
,
M.
,
2019
, “
Direct Numerical Simulations of Ripples in an Oscillatory Flow
,”
J. Fluid Mech.
,
863
(
3
), pp.
572
600
.10.1017/jfm.2018.1005
71.
Richter
,
D.
, and
Chamecki
,
M.
,
2018
, “
Inertial Effects on the Vertical Transport of Suspended Particles in a Turbulent Boundary Layer
,”
Boundary-Layer Meteorol.
,
167
(
2
), pp.
235
256
.10.1007/s10546-017-0325-3
72.
Wang
,
J.
,
Chua
,
L. H.
, and
Shanahan
,
P.
,
2019
, “
Hydrological Modeling and Field Validation of a Bioretention Basin
,”
J. Environ. Manage.
,
240
(
6
), pp.
149
159
.10.1016/j.jenvman.2019.03.090
73.
Ying
,
G.
, and
Sansalone
,
J. J.
,
2008
, “
Granulometric Relationships for Urban Source Area Runoff as a Function of Hydrologic Event Classification and Sedimentation
,”
Water, Air, Soil Pollut.
,
193
(
1–4
), pp.
229
246
.10.1007/s11270-008-9685-0
74.
Das
,
S.
,
Bai
,
H.
,
Wu
,
C.
,
Kao
,
J.-H.
,
Barney
,
B.
,
Kidd
,
M.
, and
Kuettel
,
M.
,
2016
, “
Improving the Performance of Industrial Clarifiers Using Three-Dimensional Computational Fluid Dynamics
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
130
144
.10.1080/19942060.2015.1121518
75.
Lee
,
S. Y.
,
Dimenna
,
R. A.
,
Leishear
,
R. A.
, and
Stefanko
,
D. B.
,
2008
, “
Analysis of Turbulent Mixing Jets in a Large Scale Tank
,”
ASME J. Fluids Eng.
,
130
(
1
), p. 011104.10.1115/1.2820989
76.
St. Johns River Water Management District
,
2018
,
Environmental Resource Permit Applicant's Handbook
,
St. Johns River Water Management District
,
Palatka, FL
.
You do not currently have access to this content.