Abstract

This study employs an incompressible homogeneous flow framework with a transport-equation-based cavitation model and shear stress transport turbulence model to successfully reproduce the unsteady cavitating flow around a three-dimensional hydrofoil. Cavity growth, development, and break-off during the periodic shedding process are adequately reproduced and match experimental observations. The predicted shedding frequency is very close to the experimental value of 23 ms. By monitoring the motions of the seeding trackers, growth-up of attached cavity and dynamic evolution of U-type cavity are clearly displayed, which indicating the trackers could serve as an effective tool to visualize the cavitating field. Repelling Lagrangian coherent structure (RLCS) is so complex that abundant flow patterns are highlighted, reflecting the intricacy of cavity development. The formation of cloud cavities is clearly characterized by the attracting Lagrangian coherent structure (ALCS), where bumbling wave wrapping the whole shedding cavities indicates the rotating transform of cavities, and stretching of the wave eyes shows the distortion of vortices. Generation of the re-entrant jet is considered to be not only associated with the adverse pressure gradient due to the positive attack angle but also the contribution of cloud cavitating flow, based on the observation of a buffer zone between the attached and cloud cavities.

References

1.
Brennen
,
C. E.
,
2014
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Knapp
,
R. T.
,
1955
, “
Recent Investigations of the Mechanics of Cavitation and Cavitation Damage
,”
Trans. ASME
,
77
, pp.
1045
1054
.
3.
Le
,
Q.
,
Franc
,
J.-P.
, and
Michel
,
J.-M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.10.1115/1.2910131
4.
Stutz
,
B.
, and
Reboud
,
J.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.10.1007/s003480050037
5.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
.10.1115/1.2819499
6.
Kadivar
,
E.
,
Timoshevskiy
,
M. V.
,
Nichik
,
M. Y.
,
el Moctar
,
O.
,
Schellin
,
T. E.
, and
Pervunin
,
K. S.
,
2020
, “
Control of Unsteady Partial Cavitation and Cloud Cavitation in Marine Engineering and Hydraulic Systems
,”
Phys. Fluids
,
32
(
5
), p.
052108
.10.1063/5.0006560
7.
Callenaere
,
M.
,
Franc
,
J.-P.
,
Michel
,
J.-M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.10.1017/S0022112001005420
8.
Gopalan
,
S.
, and
Katz
,
J.
,
2000
, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation
,”
Phys. Fluids
,
12
(
4
), pp.
895
911
.10.1063/1.870344
9.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows—Part 1: Cavities Forming on Models Without Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
1
41
.10.1017/S0022112000002925
10.
de Lange
,
D.
, and
de Bruin
,
G.
,
1997
, “
Sheet Cavitation and Cloud Cavitation, Re-Entrant Jet and Three-Dimensionality
,”
Applied Scientific Research
,
58
(
1–4
), pp.
91
114
.10.1023/A:1000763130780
11.
Foeth
,
E.-J.
,
van Terwisga
,
T.
, and
van Doorne
,
C.
,
2008
, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071303
.10.1115/1.2928345
12.
Kubota
,
A.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Maeda
,
M.
,
1989
, “
Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
204
210
.10.1115/1.3243624
13.
Reisman
,
G. E.
,
Wang
,
Y.-C.
, and
Brennen
,
C. E.
,
1998
, “
Observations of Shock Waves in Cloud Cavitation
,”
J. Fluid Mech.
,
355
, pp.
255
283
.10.1017/S0022112097007830
14.
Ganesh
,
H.
,
Mäkiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.10.1017/jfm.2016.425
15.
Wu
,
T. Y.-T.
,
Whitney
,
A. K.
, and
Brennen
,
C.
,
1971
, “
Cavity-Flow Wall Effects and Correction Rules
,”
J. Fluid Mech.
,
49
(
2
), pp.
223
256
.10.1017/S0022112071002039
16.
Tulin
,
M. P.
,
1953
, “
Steady Two-Dimensional Cavity Flows About Slender Bodies
,”
David Taylor Model Basin
,
Washington DC
, Report No. 834.
17.
Kinnas
,
S. A.
, and
Fine
,
N. E.
,
1993
, “
A Numerical Nonlinear Analysis of the Flow Around Two- and Three-Dimensional Partially Cavitating Hydrofoils
,”
J. Fluid Mech.
,
254
, pp.
151
181
.10.1017/S0022112093002071
18.
Tehrani
,
M.
, and
Firouz-Abadi
,
R.
,
2020
, “
An Efficient System Identification Approach to Estimate Unsteady Loads on Cavitator Plates
,”
Ocean Eng.
,
207
, p.
107444
.10.1016/j.oceaneng.2020.107444
19.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
, pp.
113
124
.10.1016/j.compfluid.2013.12.024
20.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.10.1016/j.oceaneng.2014.05.005
21.
Budich
,
B.
,
Schmidt
,
S.
, and
Adams
,
N. A.
,
2018
, “
Numerical Simulation and Analysis of Condensation Shocks in Cavitating Flow
,”
J. Fluid Mech.
,
838
, pp.
759
813
.10.1017/jfm.2017.882
22.
Chen
,
Y.
,
Chen
,
X.
,
Li
,
J.
,
Gong
,
Z.
, and
Lu
,
C.
,
2017
, “
Large Eddy Simulation and Investigation on the Flow Structure of the Cascading Cavitation Shedding Regime Around 3D Twisted Hydrofoil
,”
Ocean Eng.
,
129
, pp.
1
19
.10.1016/j.oceaneng.2016.11.012
23.
Tseng
,
C.-C.
, and
Liu
,
P.-B.
,
2016
, “
Dynamic Behaviors of the Turbulent Cavitating Flows Based on the Eulerian and Lagrangian Viewpoints
,”
Int. J. Heat Mass Transfer
,
102
, pp.
479
500
.10.1016/j.ijheatmasstransfer.2016.06.039
24.
Zhao
,
Y.
,
Wang
,
G.
,
Huang
,
B.
, and
Wu
,
Q.
,
2016
, “
Lagrangian Investigations of Vortex Dynamics in Time-Dependent Cloud Cavitating Flows
,”
Int. J. Heat Mass Transfer
,
93
, pp.
167
174
.10.1016/j.ijheatmasstransfer.2015.09.003
25.
Long
,
X.
,
Cheng
,
H.
,
Ji
,
B.
,
Arndt
,
R. E.
, and
Peng
,
X.
,
2018
, “
Large Eddy Simulation and Euler–Lagrangian Coupling Investigation of the Transient Cavitating Turbulent Flow Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
100
, pp.
41
56
.10.1016/j.ijmultiphaseflow.2017.12.002
26.
Pei
,
J.
,
Osman
,
M. K.
,
Wang
,
W.
,
Yuan
,
J.
,
Yin
,
T.
, and
Appiah
,
D.
,
2020
, “
Unsteady Flow Characteristics and Cavitation Prediction in the Double-Suction Centrifugal Pump Using a Novel Approach
,”
Proc. Inst. Mech. Eng., Part A
,
234
(
3
), pp.
283
299
.10.1177/0957650919863636
27.
Pei
,
J.
,
Osman
,
M. K.
,
Wang
,
W.
,
Appiah
,
D.
,
Yin
,
T.
, and
Deng
,
Q.
,
2019
, “
A Practical Method for Speeding Up the Cavitation Prediction in an Industrial Double-Suction Centrifugal Pump
,”
Energies
,
12
(
11
), p.
2088
.10.3390/en12112088
28.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
29.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.-L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
30.
Yin
,
T.
,
Pavesi
,
G.
,
Pei
,
J.
,
Yuan
,
S.
, and
Daniel
,
N. A.
,
2018
, “
Comparison of Various Turbulence Models Applied to a Twisted Hydrofoil
,”
ASME, New York.
31.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 3, Vol.
152
.
32.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 1988 Summer Program
, Studying Turbulence Using Numerical Simulation Databases.https://ntrs.nasa.gov/citations/19890015184
33.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.10.1017/S0022112095000462
34.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
,
2016
, “
New Omega Vortex Identification Method
,”
Sci. China Phys., Mech. Astron.
,
59
(
8
), p.
684711
.10.1007/s11433-016-0022-6
35.
Watanabe
,
S.
,
Yamaoka
,
W.
, and
Furukawa
,
A.
,
2014
, “
Unsteady Lift and Drag Characteristics of Cavitating Clark Y-11.7% Hydrofoil
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
, p.
052009
.10.1088/1755-1315/22/5/052009
36.
Yin
,
T.
,
Pavesi
,
G.
,
Cavazzini
,
G.
,
Pei
,
J.
, and
Yuan
,
S.
,
2019
, “
Numerical Investigation of Unsteady Cavitating Flow Around 3D Hydrofoils
,”
Proceedings of the SHF/AFM Conference on Hydraulic Machines and Cavitation
, Sion, Switzerland, Nov. 6–7.
37.
Menter
,
F.
,
Ferreira
,
J. C.
,
Esch
,
T.
,
Konno
,
B.
, and
Germany
,
A.
,
2003
, “
The SST Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,”
Proceedings of the International Gas Turbine Congress
, Tokyo, Japan, Nov. 2–7, pp.
2
7
.
38.
Shadden
,
S. C.
,
Lekien
,
F.
, and
Marsden
,
J. E.
,
2005
, “
Definition and Properties of Lagrangian Coherent Structures From Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows
,”
Phys. D
,
212
(
3–4
), pp.
271
304
.10.1016/j.physd.2005.10.007
39.
Haller
,
G.
,
2015
, “
Lagrangian Coherent Structures
,”
Annu. Rev. Fluid Mech.
,
47
(
1
), pp.
137
162
.10.1146/annurev-fluid-010313-141322
40.
Avellan
,
F.
,
1988
, “
Generation Mechanism and Dynamics of Cavitation Vortices Down Stream of a Fixed Leading Edge Cavity
,”
Proceedings of the 17th ONR Symposium Naval Hydrodynamics, Vol.
317, The Hague, The Netherlands, pp.
1
13
.
You do not currently have access to this content.