Abstract

Cavitation in pressure injectors/atomizers affects the liquid/spray jet behavior at its outlet. The type of atomization induced by cavitation allows developing efficient devices if this cavitation state is controlled. Cavitating flow is related to turbulent and multiphase flows with mass transfer between the liquid and its gaseous phase and which is affected by several factors. Due to the high-speed flow and small spatial and time scales involved, the study of cavitating flows using physical experiments is very expensive. By means of numerical simulations using eddy viscosity models, some of the incipient and slight developed cavitating flow characteristics in nozzles are captured, but the level of the vapor fraction is commonly underestimated. It is evident that a suitable calibration of the turbulence models based on the special characteristics of the incipient/slight developed cavitating flows allows obtaining improved results. This special calibration is necessary due to the close relation between the cavitation inception/developing conditions and the turbulence level in the flow leading to a “nonstandard turbulence state.” So, cavitating flows should not be modeled as a simple turbulent one. It is also demonstrated that the results obtained become competitive compared against the ones computed by large eddy simulations, which need a lot of computational resources and an appropriate initial solution for running. The conclusions obtained can be useful to improve injector designs because the suitable simulation of the incipient cavitation or slight developed cavitation flow conditions can be accurately simulated after calibration.

References

1.
Knapp
,
R.
,
Daily
,
J.
, and
Hammit
,
F.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
2.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
3.
Brennen
,
C.
,
2005
,
Fundamentals of Multiphase Flows
,
Cambridge University Press
,
Cambridge, UK
.
4.
Li
,
H.
,
Kelecy
,
F.
,
Egelja-Maruszewski
,
A.
, and
Vasquez
,
S.
,
2008
, “
Advanced Computational Modeling of Steady and Unsteady Cavitating Flows
,”
ASME
Paper No. IMECE2008-67450.10.1115/IMECE2008-67450
5.
Shi
,
J.
, and
Arafin
,
M.
,
2010
, “
CFD Investigation of Fuel Property Effect on Cavitating Flow in Generic Nozzle Geometries
,”
ILASS–Europe2010, 23rd Annual Conference on Liquid Atomization and Spray System
,
Czech Republic
, Sept. 6–8, Paper No.
90
. http://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/090.pdf
6.
Zhang
,
H.
,
Han
,
B.
,
Yu
,
X. G.
, and
Ju
,
D. Y.
,
2013
, “
Numerical and Experimental Studies of Cavitation Behavior in Water-Jet Cavitation Peening
,”
Process. Shock Vib.
,
20
(
5
), pp.
895
905
.10.1155/2013/910613
7.
Sou
,
A.
,
Biçer
,
B.
, and
Tomiyama
,
A.
,
2014
, “
Numerical Simulation of Incipient Cavitation Flow in a Nozzle of Fuel Injector
,”
Comput. Fluids
,
103
, pp.
42
48
.10.1016/j.compfluid.2014.07.011
8.
Biçer
,
B.
, and
Sou
,
A.
,
2014
, “
Numerical Simulation of Turbulent Cavitating Flow in Diesel Fuel Injector
,”
Proceedings of the Third International Symposium of Maritime Science
, Nov. 10–14, Japan, 3, pp
33
38
.
9.
Biçer
,
B.
,
2015
, “
Numerical Simulation of Cavitation Phenomena inside Fuel Injector Nozzles
,” Ph.D. thesis,
Kobe University
,
Japan
.
10.
Bardow
,
A.
,
Bischof
,
C. H.
,
Martin Bücker
,
H.
,
Dietze
,
G.
,
Kneer
,
R.
,
Leefken
,
A.
,
Marquardt
,
W.
,
Renz
,
U.
, and
Slusanschi
,
E.
,
2008
, “
Sensitivity-Based Analysis of the k–ε Model for the Turbulent Flow Between Two Plates
,”
Chem. Eng. Sci.
,
63
(
19
), pp.
4763
4775
.10.1016/j.ces.2007.12.029
11.
Coussirat
,
M.
,
Moll
,
F.
,
Cappa
,
F.
, and
Fontanals
,
A.
,
2016
, “
Study of Available Turbulence and Cavitation Models to Reproduce Flow Patterns in Confined Flows
,”
ASME J. Fluids Eng.
,
138
(
9
), p. 091304.10.1115/1.4033372
12.
Coussirat
,
M.
,
Moll
,
F.
, and
Fontanals
,
A.
,
2017
, “
Reproduction of the Cavitating Flows Patterns in Several Nozzles Geometries Using Calibrated Turbulence and Cavitation Models
,”
Mec. Comput.
,
XXXV
, pp.
819
841
. https://cimec.org.ar/ojs/index.php/mc
13.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
14.
Schnerr
,
G.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference Multiphase Flow
,
New Orleans, LA
, May 27–June 1.https://www.researchgate.net/publication/296196752_Physical_and_Numerical_Modeling_of_Unsteady_Cavitation_Dynamics
15.
Coutier-Delgosha
,
O.
,
Reboud
,
L. Y.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Num. Meth. Fluids
,
42
(5), pp.
527
548
.10.1002/fld.530
16.
Coussirat
,
M.
,
Moll
,
F.
, and
Fontanals
,
A.
,
2018
, “
Cavitating Flow Pattern Characterization in Square Section Injectors by Means of CFD
,”
Mec. Comput.
,
XXXVI
, pp.
1163
1172
.
17.
Sou
,
A.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2007
, “
Effects of Cavitation in a Nozzle on Liquid Jet Atomization
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3575
3582
.10.1016/j.ijheatmasstransfer.2006.12.033
18.
Sou
,
A.
,
Maulana
,
M.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2008
, “
Ligament Formation Induced by Cavitation in a Cylindrical Nozzle
,”
J. Fluid Sci. Technol.
,
3
(
5
), pp.
633
644
.10.1299/jfst.3.633
19.
Sou
,
A.
,
Maulana
,
M.
,
Isozaki
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2008
, “
Effects of Nozzle Geometry on Cavitation in Nozzles of Pressure Atomizers
,”
J. Fluid Sci. Tech.
,
3
(
5
), pp.
622
632
.10.1299/jfst.3.622
20.
Bicer, B., and Sou, A., 2015, “Numerical Models for Simulation of Cavitation in Diesel Injector Nozzles,”
Atomization Sprays
, 25(12), pp. 1063–1080.10.1615/AtomizSpr.2015011556
21.
Koukouvinis
,
P.
,
Naseri
,
H.
, and
Gavaises
,
M.
,
2017
, “
Performance of Turbulence and Cavitation Models in Prediction of Incipient and Developed Cavitation
,”
Int. J. Eng. Res.
,
18
(
4
), pp.
333
350
.10.1177/1468087416658604
22.
Biçer
,
B.
, and
Sou
,
A.
,
2015
, “
Turbulence and Bubble Dynamics Models to Simulate Transient Cavitation Flow in Fuel Injector Nozzle
,”
13th Triennial International Conference on Liquid Atomization and Spray Systems
(
ICLASS
2015),
Tainan, Taiwan
, Aug. 23–27, pp.
1
8
. https://www.researchgate.net/publication/281319242_Turbulence_and_Bubble_Dynamics_Models_to_Simulate_Transient_Cavitation_Flow_in_Fuel_Injector_Nozzle
23.
Vashahi
,
F.
,
Dafsari
,
R.
,
Rezaei
,
S.
,
Lee
,
J.
, and
Baek
,
B.
,
2019
, “
Assessment of Steady VOF RANS Turbulence Models in Rendering the Internal Flow Structure of Pressure Swirl Nozzles
,”
Fluid Dyn. Res.
,
51
(
4
), p.
045506
.10.1088/1873-7005/ab2546
24.
Edelbauer
,
W.
,
Strucl
,
J.
, and
Morozov
,
A.
,
2015
, “
Large Eddy Simulation of Cavitating Throttle Flow
,”
Advances in Hydroinformatics
, P. Gourbesville, J. Cunge, and G. Caignaert, eds., Springer Water, Srpinger, Singapore, pp.
501
517
.10.1007/978-981-287-615-7_34
25.
Zwart
,
J.
,
Gerber
,
A.
, and
Belamri
,
T.
,
2004
, “
Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Proceedings of Fifth International Conference on Multiphase Flow
,
Yokohama, Japan
, Paper No.
152
.https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
26.
Ali
,
M.
,
Doolan
,
C.
, and
Wheatley
,
V.
,
2009
, “
Convergence Study for a Two-Dimensional Simulation of Flow Around a Square Cylinder at a Low Reynolds Number
,”
Seventh International Conference on CFD in the Minerals and Process Industries CSIRO
,
Australia
.
27.
Celik
,
I.
,
Ghia
,
U.
,
Roache
,
P.
,
Freitas
,
C.
,
Coleman
,
H.
, and
Raad
,
P.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Roache
,
P.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid. Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
29.
Xing
,
T.
, and
Stern
,
F.
,
2010
, “
Factors of Safety for Richardson Extrapolation
,”
ASME J. Fluids Eng.
,
132
(
6
), p. 061403.10.1115/1.4001771
30.
Roache
,
P.
,
2011
, “
Discussion: Factors of Safety for Richardson Extrapolation (Xing T., and Stern F.2010, ASME J. Fluids Eng., 132, pp. 061403)
,”
ASME J. Fluids Eng.
,
133
(
11), p.
115501.10.1115/1.4005029
31.
Dular
,
M.
, and
Bachert
,
R.
,
2009
, “
The Issue of Strouhal Number Definition in Cavitating Flow
,”
J. Mech. Eng.
,
55
(
11
), pp.
666
674
.https://www.researchgate.net/publication/235339014_The_issue_of_Strouhal_number_definition_in_cavitating_flow
32.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.10.1016/j.ymssp.2004.08.006
33.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
, p.
503
.
34.
Durbin
,
P.
, and
Pettersson
,
R.
,
2011
,
Statistical Theory and Modeling for Turbulent Flows
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
35.
Menter
,
F.
,
1994
, “
Two Equations Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
36.
Spalart
,
P.
, and
Allmaras
,
R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Recherche Aerospatiale, No. 1, pp. 5– 21.
37.
Wilcox
,
D.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
38.
Ansys, “
Ansys Fluent Software
,” Ansys, accessed Nov. 17, 2020, http://www.ansys.com/Industries/Academic/Tools/
39.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,” Turbulence, Heat and Mass Transfer,
Begell House
, pp.
625
632
.
40.
Egorov
,
Y.
,
Menter
,
F.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 2: Application to Complex Flows
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
139
165
.10.1007/s10494-010-9265-4
41.
Menter
,
F.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.10.1007/s10494-010-9264-5
42.
Wilcox
,
D.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.10.2514/3.10041
43.
Townsend
,
A. A.
,
1976
,
The Structure of Turbulent Shear Flow
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
, pp.
107
108
.
You do not currently have access to this content.