Abstract

Flow pattern is an important engineering design factor in two-phase flow in the chemical, nuclear, and energy industries, given its effects on pressure drop, holdup, and heat and mass transfer. The prediction of two-phase flow patterns through phenomenological models is widely used in both industry and academy. In contrast, as more experimental data become available for gas–liquid flow in pipes, the use of data-driven models to predict flow pattern transition, such as machine learning, has become more reliable. This type of heuristic modeling has a high demand for experimental data, which may not be available in some industrial applications. As a consequence, it may fail to deliver a sufficiently generalized transition prediction. Incorporation of physics in machine learning is being proposed as an alternative to improve prediction and also to reduce the demand for experimental data. This paper evaluates the use of hybrid-physics-data machine learning to predict gas–liquid flow pattern transition in pipes. Random forest and artificial neural network are the chosen tools. A database of experiments available in the open literature was collected and is shared in this work. The performance of the proposed hybrid model is compared with phenomenological and data-driven machine learning models through confusion matrices and graphics. The results show improvement in prediction performance even with a low amount of data for training. The study also suggests that graphical comparison of flow pattern transition boundaries provides better understanding of the performance of the models than the traditional metrics.

References

1.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
,
Springer
,
New York
.
2.
Shoham
,
O.
,
2006
,
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes
,
Society of Petroleum Engineers
,
Richardson, TX
.
3.
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1976
, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
(
1
), pp.
47
55
.10.1002/aic.690220105
4.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
5.
Barnea
,
D.
,
1987
, “
A Unified Model for Predicting Transitions for the Whole Pipe Inclinations
,”
Int. J. Multiph. Flow
,
13
(
1
), pp.
1
12
.10.1016/0301-9322(87)90002-4
6.
Thome
,
J. R.
,
2015
,
Encyclopedia of Two-Phase Heat Transfer and Flow I
,
World Scientific
, Singapore.
7.
Brito
,
A.
,
Cabello
,
R.
,
Marquez
,
J.
,
Trujillo
,
J.
, and
Guzmán
,
N.
,
2015
, “
Flow Pattern Transition Model for Gas-Highly Viscous Fluids in Horizontal Pipelines
,”
17th International Conference of Multiphase Production Technology
, Cannes, France, June 10–12, pp.
269
282
.https://www.onepetro.org/conference-paper/BHR-2015-F2
8.
Khaledi
,
H. A.
,
Smith
,
I. E.
,
Unander
,
T. E.
, and
Nossen
,
J.
,
2014
, “
Investigation of Two-Phase Flow Pattern, Liquid Holdup and Pressure Drop in Viscous Oil-Gas Flow
,”
Int. J. Multiph. Flow
,
67
, pp.
37
51
.10.1016/j.ijmultiphaseflow.2014.07.006
9.
Kristiansen
,
O.
,
2004
,
Experiments on the Transition From Stratified to Slug Flow in Multiphase Pipe Flow
,
Norwegian University of Science and Technology
, Trondheim, Norway.
10.
Abduvayt
,
P.
,
Arihara
,
N.
,
Manabe
,
R.
, and
Ikeda
,
K.
,
2003
, “
Experimental and Modeling Studies for Gas-Liquid Two-Phase Flow at High Pressure Conditions
,”
J. Jpn. Pet. Inst.
,
46
(
2
), pp.
111
125
.10.1627/jpi.46.111
11.
Brito
,
A.
,
Marquez
,
J.
,
Ruiz
,
R.
, and
Cabello
,
R.
,
2014
, “
Impact of the Heavy-Oil Properties in the Slug-Flow Characteristics
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
, Society of Petroleum Engineers, Maracaibo, Venezuela, May 21–23, pp.
178
185
.10.2118/169256-MS
12.
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2019
, “
Slug-to-Churn Vertical Two-Phase Flow Regime Transition Study Using an Interface Tracking Approach
,”
Int. J. Multiph. Flow
,
115
, pp.
196
206
.10.1016/j.ijmultiphaseflow.2019.04.003
13.
Zimmer
,
M. D.
, and
Bolotnov
,
I. A.
,
2020
, “
Exploring Two-Phase Flow Regime Transition Mechanisms Using High-Resolution Virtual Experiments
,”
Nucl. Sci. Eng.
,
194
(
8–9
), pp.
708
720
.10.1080/00295639.2020.1722543
14.
Joachims
,
T.
,
1998
, “
Text Categorization With Support Vector Machines: Learning With Many Relevant Features
,” Machine Learning: ECML-98, pp.
137
142
.
15.
Lawrence
,
S.
,
Giles
,
C. L.
,
Tsoi
,
A. C.
, and
Back
,
A. D.
,
1997
, “
Face Recognition: A Convolutional Neural-Network Approach
,”
IEEE Trans. Neural Networks
,
8
(
1
), pp.
98
113
.10.1109/72.554195
16.
Wang
,
H. X.
, and
Zhang
,
L. F.
,
2009
, “
Identification of Two-Phase Flow Regimes Based on Support Vector Machine and Electrical Capacitance Tomography
,”
Meas. Sci. Technol.
,
20
(
11
), p.
114007
.10.1088/0957-0233/20/11/114007
17.
Al-Naser
,
M.
,
Elshafei
,
M.
, and
Al-Sarkhi
,
A.
,
2016
, “
Artificial Neural Network Application for Multiphase Flow Patterns Detection: A New Approach
,”
J. Pet. Sci. Eng.
,
145
, pp.
548
564
.10.1016/j.petrol.2016.06.029
18.
Trafalis
,
T. B.
,
Oladunni
,
O.
, and
Papavassiliou
,
D. V.
,
2005
, “
Two-Phase Flow Regime Identification With a Multiclassification Support Vector Machine (SVM) Model
,”
Ind. Eng. Chem. Res.
,
44
(
12
), pp.
4414
4426
.10.1021/ie048973l
19.
Bao
,
H.
,
Feng
,
J.
,
Dinh
,
N.
, and
Zhang
,
H.
,
2020
, “
Computationally Efficient CFD Prediction of Bubbly Flow Using Physics-Guided Deep Learning
,”
Int. J. Multiph. Flow
,
131
, p.
103378
.10.1016/j.ijmultiphaseflow.2020.103378
20.
Liu
,
Y.
,
Dinh
,
N. T.
,
Smith
,
R. C.
, and
Sun
,
X.
,
2019
, “
Uncertainty Quantification of Two-Phase Flow and Boiling Heat Transfer Simulations Through a Data-Driven Modular Bayesian Approach
,”
Int. J. Heat Mass Transfer
,
138
, pp.
1096
1116
.10.1016/j.ijheatmasstransfer.2019.04.075
21.
Kanin
,
E. A.
,
Osiptsov
,
A. A.
,
Vainshtein
,
A. L.
, and
Burnaev
,
E. V.
,
2019
, “
A Predictive Model for Steady-State Multiphase Pipe Flow: Machine Learning on Lab Data
,”
J. Pet. Sci. Eng.
,
180
, pp.
727
746
.10.1016/j.petrol.2019.05.055
22.
Lazer
,
D.
,
Kennedy
,
R.
,
King
,
G.
, and
Vespignani
,
A.
,
2014
, “
The Parable of Google Flu: Traps in Big Data Analysis
,”
Science (80-)
,
343
(
6176
), pp.
1203
1205
.10.1126/science.1248506
23.
Karpatne
,
A.
,
Atluri
,
G.
,
Faghmous
,
J. H.
,
Steinbach
,
M.
,
Banerjee
,
A.
,
Ganguly
,
A.
,
Shekhar
,
S.
,
Samatova
,
N.
, and
Kumar
,
V.
,
2017
, “
Theory-Guided Data Science: A New Paradigm for Scientific Discovery From Data
,”
IEEE Trans. Knowl. Data Eng.
,
29
(
10
), pp.
2318
2331
.10.1109/TKDE.2017.2720168
24.
Karpatne
,
A.
,
Watkins
,
W.
,
Read
,
J.
, and
Kumar
,
V.
,
2017
, “
Physics-Guided Neural Networks (PGNN): an Application in Lake Temperature Modeling
,” e-print arXiv
http://arxiv.org/abs/1710.11431
.http://arxiv.org/abs/1710.11431
25.
Faghmous
,
J. H.
, and
Kumar
,
V.
,
2014
, “
A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science
,”
Big Data
,
2
(
3
), pp.
155
163
.10.1089/big.2014.0026
26.
Dourado
,
A. D.
, and
Viana
,
F.
,
2020
, “
Physics-Informed Neural Networks for Bias Compensation in Corrosion-Fatigue
,” AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics, Reston, VA.
27.
Wang
,
J. X.
,
Wu
,
J. L.
, and
Xiao
,
H.
,
2017
, “
Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data
,”
Phys. Rev. Fluids
,
2
(
3
), pp.
1
36
.10.1103/PhysRevFluids.2.034603
28.
F-Chart-Software, 2020, “
EES: Engineering Equation Solver | F-Chart Software: Engineering Software
,” accessed Aug. 23, 2020, http://fchartsoftware.com/ees/
29.
Python-Software-Foundation, 2020, “
Python Programming Language Documentation
,” accessed Aug. 23, 2020, https://docs.python.org/3/
30.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
É.
,
2012
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
31.
Guyon
,
I.
,
Makhoul
,
J.
,
Schwartz
,
R.
, and
Vapnik
,
V.
,
1998
, “
What Size Test Set Gives Good Error Rate Estimates?
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
20
(
1
), pp.
52
64
.10.1109/34.655649
32.
Witten
,
I. H.
,
Frank
,
E.
, and
Hall
,
M. A.
,
2005
,
Data Mining: Practical Machine Learning Tools and Techniques
, 2nd ed., Morgan Kaufmann Publishers, San Francisco, CA.
33.
Barnea
,
D.
,
Shoham
,
O.
, and
Taitel
,
Y.
,
1982
, “
Flow Pattern Transition for Downward Inclined Two Phase Flow; Horizontal to Vertical
,”
Chem. Eng. Sci
,.,
37
(
5
), pp.
735
740
.10.1016/0009-2509(82)85033-1
34.
Barnea
,
D.
,
Shoham
,
O.
,
Taitel
,
Y.
, and
Dukler
,
A. E.
,
1985
, “
Gas-Liquid Flow in Inclined Tubes: Flow Pattern Transitions for Upward Flow
,”
Chem. Eng. Sci.
,
40
(
1
), pp.
131
136
.10.1016/0009-2509(85)85053-3
35.
Kokal
,
S. L.
, and
Stanislav
,
J. F.
,
1989
, “
An Experimental Study of Two-Phase Flow in Slightly Inclined Pipes-I. Flow Patterns
,”
Chem. Eng. Sci.
,
44
(
3
), pp.
665
679
.10.1016/0009-2509(89)85042-0
36.
Crowley
,
C. J.
,
Wallis
,
G. B.
, and
Barry
,
J. J.
,
1992
, “
Validation of a One-Dimensional Wave Model for the Stratified-to-Slug Flow Regime Transition, With Consequences for Wave Growth and Slug Frequency
,”
Int. J. Multiph. Flow
,
18
(
2
), pp.
249
271
.10.1016/0301-9322(92)90087-W
37.
Shmueli
,
A.
,
Unander
,
T. E.
, and
Nydal
,
O. J.
,
2015
, “
Characteristics of Gas/Water/Viscous Oil in Stratified-Annular Horizontal Pipe Flows
,”
OTC Brazil, Offshore Technology Conference
, Rio de Janeiro, Brazil, Oct. 27–29, pp.
1
18
.10.4043/26176-MS
38.
Yamaguchi
,
K.
, and
Yamazaki
,
Y.
,
1984
, “
Combinated Flow Pattern Map for Cocurrent and Countercurrent Air-Water Flows in Vertical Tube
,”
J. Nucl. Sci. Technol.
,
21
(
5
), pp.
321
327
.10.1080/18811248.1984.9731053
39.
Usui
,
K.
,
1989
, “
Vertically Downward Two-Phase Flow, (II): Flow Regime Transition Criteria
,”
J. Nucl. Sci. Technol.
,
26
(
11
), pp.
1013
1022
.10.1080/18811248.1989.9734422
40.
Ohnuki
,
A.
, and
Akimoto
,
H.
,
2000
, “
Experimental Study on Transition of Flow Pattern and Phase Distribution in Upward Air-Water Two-Phase Flow Along a Large Vertical Pipe
,”
Int. J. Multiph. Flow
,
26
(
3
), pp.
367
386
.10.1016/S0301-9322(99)00024-5
41.
Lee
,
J. Y.
,
Ishii
,
M.
, and
Kim
,
N. S.
,
2008
, “
Instantaneous and Objective Flow Regime Identification Method for the Vertical Upward and Downward Co-Current Two-Phase Flow
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3442
3459
.10.1016/j.ijheatmasstransfer.2007.10.037
42.
Hanafizadeh
,
P.
,
Saidi
,
M. H.
,
Nouri Gheimasi
,
A.
, and
Ghanbarzadeh
,
S.
,
2011
, “
Experimental Investigation of Air-Water, Two-Phase Flow Regimes in Vertical Mini Pipe
,”
Sci. Iran.
,
18
(
4
), pp.
923
929
.10.1016/j.scient.2011.07.003
43.
Almabrok
,
A.
,
2013
,
Gas-Liquid Two-Phase Flow in Up and Down Vertical Pipes
,
Cranfield University
, Cranfield, UK.
44.
Ansari
,
M. R.
, and
Azadi
,
R.
,
2016
, “
Effect of Diameter and Axial Location on Upward Gas-Liquid Two-Phase Flow Patterns in Intermediate-Scale Vertical Tubes
,”
Ann. Nucl. Energy
,
94
, pp.
530
540
.10.1016/j.anucene.2016.04.020
45.
Al-Ruhaimani
,
F.
,
Pereyra
,
E.
,
Sarica
,
C.
,
Al-Safran
,
E. M.
, and
Torres
,
C. F.
,
2017
, “
Experimental Analysis and Model Evaluation of High-Liquid-Viscosity Two-Phase Upward Vertical Pipe Flow
,”
SPE J.
,
22
(
03
), pp.
0712
0735
.10.2118/184401-PA
46.
Saljoshi
,
P. S.
, and
Autee
,
A. T.
,
2017
, “
Experimental Investigation of Two-Phase Flow Patterns in Minichannels at Horizontal Orientation
,”
Heat Mass Transfer Stoffuebertrag.
,
53
(
9
), pp.
2799
2811
.10.1007/s00231-017-2020-9
47.
Li
,
Z.
,
Wang
,
G.
,
Yousaf
,
M.
,
Yang
,
X.
, and
Ishii
,
M.
,
2018
, “
Flow Structure and Flow Regime Transitions of Downward Two-Phase Flow in Large Diameter Pipes
,”
Int. J. Heat Mass Transfer
,
118
, pp.
812
822
.10.1016/j.ijheatmasstransfer.2017.11.037
You do not currently have access to this content.