Abstract

This study investigates a new algorithm for modeling viscous transonic flow at high Reynolds number cases suitable for unstructured grids. The challenge of modeling viscous transonic flow around airfoils becomes intense at high Reynolds number cases due to a variety of flow regimes encountered, such as boundary layer growth and the shockwave/turbulent boundary-layer interaction, accompanied by large separation bubble. Therefore, it is highly demanded to develop robust and efficient models that can capture the shock-induced problems of turbulent flows for aircraft design purposes. The new model is essentially a hybrid algorithm to address the conflict between turbulence modeling and shock-capturing requirements. A skew-symmetric form of a collocated finite volume scheme with minimum aliasing errors was implemented to model the turbulent region in the combination of a semidiscrete, central difference scheme to capture discontinuities with adequately low numerical dissipation for the minimal effect on turbulent flows. To evaluate the effectiveness of the model, it was tested in three conventional cases. The computational results are close to measured data for predicting the shock locations. This implies that the model is able to predict the scale of the separation bubble and the main characteristics of turbulent transonic flow adequately.

References

References
1.
Anderson
,
J. D.
,
Modern Compressible Flows
, 3rd ed.
McGraw-Hill Higher Education
,
New York
.
2.
Harris
,
C. D.
,
1981
, “
Two Dimensional Aerodynamic Characteristics of the NACA 0012 Airfoil in the Langley 8-Foot Transonic Pressure Tunnel
,”
NASA Langley Research Center, Hampton, VA
, NASA Technical Memorandum 81927.
3.
Huff
,
D. L.
,
Wu
,
J.-C.
, and
Or
,
C. T.
,
1987
, “
Analysis of Viscous Transonic Flow Over Airfoil Sections
,”
NASA, Lewis Research Center, Report no.
AIAA-87-0420, pp.
24
32
.
4.
Zangeneh
,
R.
,
2020
, “
A High-Fidelity Approach to Analyze Transonic Flow Over Cones
,”
AIAA
Paper No. 2020-2705.10.2514/6.2020-2705
5.
Cox
,
R. A.
,
1989
, “
Navier–Stokes Solutions of 2-D Transonic Flow Over Unconventional Airfoils
,” Capstones theses and dissertations, Iowa State University, Ames, IA.
6.
Szubert
,
D.
,
Asproulias
,
I.
,
Grossi
,
F.
,
Duvigneau
,
R.
,
Hoarau
,
Y.
, and
Braza
,
M.
,
2016
, “
Numerical Study of the Turbulent Transonic Interaction and Transition Location Effect Involving Optimisation Around a Supercritical Airfoil
,”
Eur. J. Mech. B/Fluid
,
55
(
2
), pp.
380
393
.10.1016/j.euromechflu.2015.09.007
7.
Araya
,
G.
,
2019
, “
Turbulence Model Assessment in Compressible Flows Around Complex Geometries With Unstructured Grids
,”
Fluids,
4
(
2
), p.
81
.10.3390/fluids4020081
8.
Kuzmin
,
D.
,
2010
, “
A Guide to Numerical Methods for Transport Equations
,” University Erlangen-Nuremberg, accessed Oct. 9, 2020, http://www.mathematik.uni-dortmund.de/∼kuzmin/Transport.pdf
9.
Colonius
,
T.
, and
Lele
,
S.
,
2004
, “
Computational Aeroacoustics: Progress on Nonlinear Problems of Sound Generation
,”
Prog. Aerosp. Sci.
,
40
(
6
), pp.
345
416
.10.1016/j.paerosci.2004.09.001
10.
Ducros
,
F.
,
Ferrand
,
V.
,
Nicoud
,
F.
,
Weber
,
C.
,
Darracq
,
D.
,
Gacherieu
,
C.
, and
Poinsot
,
T.
,
1999
, “
Large-Eddy Simulation of the Shock/Turbulence Interaction
,”
J. Comput. Phys.
,
152
(
2
), pp.
517
549
.10.1006/jcph.1999.6238
11.
Modesti
,
D.
, and
Pirozzoli
,
S.
,
2017
, “
A Low-Dissipative Solver for Turbulent Compressible Flows on Unstructured Meshes, With OpenFOAM Implementation
,”
J. Comput. Fluids
,
152
, pp.
14
23
.10.1016/j.compfluid.2017.04.012
12.
Kennedy
,
C.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier–Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.10.1016/j.jcp.2007.09.020
13.
Pirozzoli
,
S.
, and
Turkel
,
E.
,
2011
, “
Numerical Methods for High-Speed Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
163
194
.10.1146/annurev-fluid-122109-160718
14.
Swanson
,
R. C.
, and
Turkel
,
E.
,
1992
, “
On Central-Difference and Upwind Schemes
,”
J. Comput. Phys.
,
101
(
2
), pp.
292
306
.10.1016/0021-9991(92)90007-L
15.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2000
, “
New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations
,”
J. Comput. Phys.
,
180
, pp.
241
282
.10.1006/jcph.2000.6459
16.
Kurganov
,
A.
,
Noelle
,
S.
, and
Petrova
,
G.
,
2001
, “
Semi-Discrete Central-Upwind Scheme for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations
,”
SIAM J. Sci. Comput.
,
23
(
3
), pp.
707
740
.10.1137/S1064827500373413
17.
Greenshields
,
C. J.
,
Weller
,
H. G.
,
Gasparini
,
L.
, and
Reese
,
J. M.
,
2009
, “
Implementation of Semi-Discrete, Non-Staggered Central Schemes in a Colocated, Polyhedral, Finite Volume Framework, for High-Speed Viscous Flows
,”
Int. J. Numer. Method Fluids
,
63
(
1
), pp.
1
21
.10.1002/fld.2069
18.
Kurganov
,
A.
, and
Petrova
,
G.
,
2005
, “
Central-Upwind Schemes on Triangular Grids for Hyperbolic Systems of Conservation Laws
,”
Numer. Methods Partial Diff. Eq.
,
21
(
3
), pp.
536
552
.10.1002/num.20049
19.
Van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme, II: Monotonicity and Conservation Combined in a Second Order Scheme
,”
J. Comput. Phys.
,
14
(
4
), pp.
361
370
.10.1016/0021-9991(74)90019-9
20.
Kurganov
,
A.
, and
Lin
,
C. T.
,
2007
, “
Simple, on the Reduction of Numerical Dissipation in Central-Upwind Schemes
,”
Commun. Comp. Phys.
,
2
(
1
), pp.
141
163
.
21.
Greenshields, C. J.,
2004
,
OpenCFD Ltd.
, http://www.openfoam.org
22.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
23.
Mani
,
M.
,
Ladd
,
J. A.
,
Cain
,
A. B.
, and
Bush
,
R. H.
,
1997
, “
An Assessment of One- and Two-Equation Turbulence Models for Internal and External Flows
,”
AIAA
,
Snowmass Village, CO
, Report No.
AIAA 97-2010
.10.2514/6.1997-2010
24.
Schmitt
,
V.
, and
Charpin
,
F.
,
1979
, “
Pressure Distributions on the ONERA-M6-Wing at Transonic Mach Numbers. Experimental Data Base for Computer Program Assessment. Report of the Fluid Dynamics Panel Working Group 04
,”
Royal Aircraft Establishment
,
London, UK
, Report No. AGARD AR 138.
25.
Roger
,
M.
, and
Malik
,
R.
,
2017
, “
CFD Vision 2030 and Implementation
,” NASA Ames Research Center Moffett Field, CA,Report No. ARC-DAA-TN43439.
26.
Treadgold
,
D. A.
,
Jones
,
A. F.
, and
Wilson
,
K. H.
,
1979
, “
Pressure Distribution Measured in the RAE 8 ft x 6 f t Transonic Wind Tunnel on RAE Wing 'A' in Combination With an Axi-Symmetric Body at Mach Numbers of 0.4, 0.8 and 0.9
,”
Royal Aircraft Establishment
,
London, UK
, Report No. AGARD AR 138.
You do not currently have access to this content.