Abstract

In this technical brief, we investigate the feasibility to use a cost-effective system for the study of frictional losses in hydro- and magnetohydrodynamic (MHD) flows. Experiments are performed in rectangular channels with different aspect ratios, whose dimensions range from 500 μm to 1.835mm. Fabrication is done with conventional technology, and characterization by commercial sensors and open-source electronic prototyping platforms. Water and GaInSn are used as working fluids. GaInSn experiments are performed for one aspect with and without external magnetic field. For these experiments, Reynolds number varies from 80 to 1000. Characterization is performed in terms of the Darcy friction factor. Uncertainty associated with this common fabrication and characterization methodology is presented.

References

References
1.
Khoshmanesh
,
K.
,
Tang
,
S.-Y.
,
Zhu
,
J. Y.
,
Schaefer
,
S.
,
Mitchell
,
A.
,
Kalantar-Zadeh
,
K.
, and
Dickey
,
M. D.
,
2017
, “
Liquid Metal Enabled Microfluidics
,”
Lab Chip
,
17
(
6
), pp.
974
993
.10.1039/C7LC00046D
2.
Bo
,
G.
,
Ren
,
L.
,
Xu
,
X.
,
Du
,
Y.
, and
Dou
,
S.
,
2018
, “
Recent Progress on Liquid Metals and Their Applications
,”
Adv. Phys.: X
,
3
(
1
), p.
1446359
.10.1080/23746149.2018.1446359
3.
Wang
,
Z.
, and
Lei
,
T.
,
2020
, “
Liquid Metal MHD Effect and Heat Transfer Research in a Rectangular Duct With Micro-Channels Under a Magnetic Field
,”
Int. J. Therm. Sci.
,
155
, p.
106411
.10.1016/j.ijthermalsci.2020.106411
4.
Rivero
,
M.
, and
Cuevas
,
S.
,
2019
, “
Theoretical Analysis of the Frictional Losses in Magnetohydrodynamic Microflows Considering Slippage
,”
Microsyst. Technol.
,
25
(
10
), pp.
3879
3889
.10.1007/s00542-019-04496-y
5.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
0112011
.10.1115/1.4000692
6.
Duggirala
,
R. K.
,
Roy
,
C. J.
,
Saeidi
,
S. M.
,
Khodadadi
,
J. M.
,
Cahela
,
D. R.
, and
Tatarchuk
,
B. J.
,
2008
, “
Pressure Drop Predictions in Microfibrous Materials Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
0713021
.10.1115/1.2948363
7.
Akbari
,
M.
,
Sinton
,
D.
, and
Bahrami
,
M.
,
2009
, “
Pressure Drop in Rectangular Microchannels as Compared With Theory Based on Arbitrary Cross Section
,”
ASME J. Fluids Eng.
,
131
(
4
), p.
0412021
.10.1115/1.3077143
8.
Gad-El-Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices—the Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
5
33
.10.1115/1.2822013
9.
Peng
,
K.
,
Yao
,
J.
,
Cho
,
S.
,
Cho
,
Y.
,
Kim
,
H. S.
, and
Park
,
J.
,
2020
, “
Liquid Metal Embedded Real Time Microfluidic Flow Pressure Monitoring Sensor
,”
Sens. Actuators A: Phys.
,
305
, p.
111909
.10.1016/j.sna.2020.111909
10.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1073
1083
.10.1016/j.ijthermalsci.2006.01.016
11.
Idelchik
,
I. E.
,
2008
,
Handbook of Hydraulic Resistance
, 4th ed.,
Bell House
.
12.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2008
, “
Effects of Corrugated Roughness on Developed Laminar Flow in Microtubes
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
0311021
.10.1115/1.2842148
13.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
, 4th ed.,
Wiley
,
Hoboken, NJ
.
14.
Ray
,
S.
, and
Date
,
A. W.
,
2003
, “
Friction and Heat Transfer Characteristics of Flow Through Square Duct With Twisted Tape Insert
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
889
902
.10.1016/S0017-9310(02)00355-1
15.
Xu
,
B.
,
Ooti
,
K.
,
Wong
,
N.
, and
Choi
,
W.
,
2000
, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Commun. Heat Mass Transfer
,
27
(
8
), pp.
1165
1176
.10.1016/S0735-1933(00)00203-7
16.
Waddell
,
A.
,
Punch
,
J.
,
Stafford
,
J.
, and
Jeffers
,
N.
,
2016
, “
The Characterization of a Low-Profile Channel–Confined Jet for Targeted Hot-Spot Cooling in Microfluidic Applications
,”
Int. J. Heat Mass Transfer
,
101
, pp.
620
628
.10.1016/j.ijheatmasstransfer.2016.04.108
17.
Wu
,
Z.
,
Cao
,
Z.
, and
Sunden
,
B.
,
2019
, “
Flow Patterns and Slug Scaling of Liquid-Liquid Flow in Square Microchannels
,”
Int. J. Multiphase Flow
,
112
, pp.
27
39
.10.1016/j.ijmultiphaseflow.2018.12.009
18.
Xu
,
Q.
,
Oudalov
,
N.
,
Guo
,
Q.
,
Jaeger
,
H. M.
, and
Brown
,
E.
,
2012
, “
Effect of Oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium
,”
Phys. Fluids
,
24
(
6
), p.
063101
.10.1063/1.4724313
19.
Larsen
,
R. J.
,
Dickey
,
M. D.
,
Whitesides
,
G. M.
, and
Weitz
,
D. A.
,
2009
, “
Viscoelastic Properties of Oxide-Coated Liquid Metals
,”
J. Rheol.
,
53
(
6
), pp.
1305
1326
.10.1122/1.3236517
You do not currently have access to this content.