Abstract

Impacting water droplet on a hydrophobic soft surface is investigated and impacting droplet behavior during the spreading and retraction phases is examined. Polyisoprene elastomer surface is hydrophobized via deposition with functionalized nanosilica particles using the dip coating method. Hydrophobized surface results in the contact angle of 135 ± 3 deg with a hysteresis of 2 ± 1 deg, and stretching and stretch relaxing of the coated samples do not alter the wetting state of the surfaces. Pressure variation, spreading, and retraction rates of droplet are simulated and findings are validated through the experimental data obtained from high-speed video system. The findings are also compared to those obtained for the impacting droplet on the hydrophobized glass surfaces. It is observed that predictions of droplet height and droplet shape agree well with the experimental data. Spreading period of the impacting droplet on the hydrophobized elastomer surface is longer than the hydrophobic glass surface; contrary, the retraction period of the impacting droplet is shorter on the elastomer surface than the glass surface. Impacting droplet generates large amplitude oscillatory surface waves on the elastomer surface and as the time progresses the wave amplitude reduces considerably, particularly along the surface (x-axis).

References

References
1.
Liu
,
X.
,
2018
, “
Experimental Study of Drop Impact on Deep-Water Surface in the Presence of Wind
,”
J. Phys. Oceanogr.
,
48
(
2
), pp.
329
341
.10.1175/JPO-D-17-0172.1
2.
Schneider
,
T.
,
Kreutz
,
J.
, and
Chiu
,
D. T.
,
2013
, “
The Potential Impact of Droplet Microfluidics in Biology
,”
Anal. Chem.
,
85
(
7
), pp.
3476
3482
.10.1021/ac400257c
3.
Zhu
,
C.-X.
,
Tao
,
M.-J.
,
Zhao
,
N.
,
Zhu
,
C.-L.
, and
Wang
,
Z.-Z.
,
2019
, “
Study of Droplet Shadow Zone of Aircraft Wing With Diffusion Effects
,”
AIAA J.
, pp.
1
10
.10.2514/1.J058241
4.
Beyaz
,
A.
,
Dagtekin
,
M.
,
Cilingir
,
I.
, and
Gerdan
,
D.
,
2017
, “
Evaluation of Droplet Size Spectra for Agricultural Pesticide Applications Using Water Sensitive Paper and Image Analysis Techniques
,”
Fresenius Environ. Bull.
,
26
(
12A
), pp.
102
108
.https://www.researchgate.net/publication/322294925_Evaluation_of_Droplet_Size_Spectra_for_Agricultural_Pesticide_Applications_Using_Water_Sensitive_Paper_and_Image_Analysis_Techniques
5.
Hassan
,
G.
,
Yilbas
,
B. S.
,
Al‐Sharafi
,
A.
,
Sahin
,
A. Z.
, and
Al‐Qahtani
,
H.
,
2019
, “
Solar Energy Harvesting and Self‐Cleaning of Surfaces by an Impacting Water Droplet
,”
Int. J. Energy Res.
,
44
(
3
), pp.
2072
2083
.10.1002/er.4935
6.
Zhang
,
G.
,
Quetzeri-Santiago
,
M. A.
,
Stone
,
C. A.
,
Botto
,
L.
, and
Castrejón-Pita
,
J. R.
,
2018
, “
Droplet Impact Dynamics on Textiles
,”
Soft Matter
,
14
(
40
), pp.
8182
8190
.10.1039/C8SM01082J
7.
Diaz
,
A. J.
, and
Ortega
,
A.
,
2016
, “
Gas-Assisted Droplet Impact on a Solid Surface
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081104
.10.1115/1.4033025
8.
Abubakar
,
A. A.
,
Yilbas
,
B. S.
,
Hassan
,
G.
,
Al-Qahtani
,
H.
,
Ali
,
H.
, and
Al-Sharafi
,
A.
,
2020
, “
Droplet Impacting on a Hydrophobic Surface: Influence of Surface Wetting State on Droplet Behavior
,”
ASME J. Fluids Eng.
,
142
(
7
), p.
071205
.10.1115/1.4046559
9.
Chakaneh
,
J. Z.
,
Pishbin
,
S. J.
,
Lotfabadi
,
A. S.
, and
Passandideh-Fard
,
M.
,
2019
, “
Experimental and Numerical Characterization of Drop Impact on a Hydrophobic Cylinder
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081112
.10.1115/1.4042666
10.
Fujimoto
,
H.
,
Doi
,
R.
, and
Takuda
,
H.
,
2012
, “
An Experimental Study on the Oblique Collisions of Water Droplets With a Smooth Hot Solid
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071301
.10.1115/1.4006926
11.
Chen
,
S.
, and
Bertola
,
V.
,
2017
, “
Drop Impact on Spherical Soft Surfaces
,”
Phys. Fluids
,
29
(
8
), p.
82106
.10.1063/1.4996587
12.
Weisensee
,
P. B.
,
Tian
,
J.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2016
, “
Water Droplet Impact on Elastic Superhydrophobic Surfaces
,”
Sci. Rep.
,
6
, p.
30328
.10.1038/srep30328
13.
Khojasteh
,
D.
,
Kazerooni
,
M.
,
Salarian
,
S.
, and
Kamali
,
R.
,
2016
, “
Droplet Impact on Superhydrophobic Surfaces: A Review of Recent Developments
,”
J. Ind. Eng. Chem.
,
42
, pp.
1
14
.10.1016/j.jiec.2016.07.027
14.
Pearson
,
J. T.
,
Bilodeau
,
D.
, and
Maynes
,
D.
,
2016
, “
Two-Prolonged Jet Formation Caused by Droplet Impact on Anisotropic Superhydrophobic Surfaces
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
074501
.10.1115/1.4032596
15.
Farrokhpanah
,
A.
,
Samareh
,
B.
, and
Mostaghimi
,
J.
,
2015
, “
Applying Contact Angle to a Two-Dimensional Multiphase Smoothed Particle Hydrodynamics Model
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041303
.10.1115/1.4028877
16.
Peng
,
Y.
,
Shanshan
,
L.
, and
Pan
,
Z.
,
2020
, “
Non-Axis-Symmetric Transport Characteristics of an Evaporating Water Droplet Sessile on Heated Horizontal Superhydrophobic Substrates
,”
ASME J. Fluids Eng.
,
142
(
3
), p.
031107
.10.1115/1.4045863
17.
Alizadeh
,
A.
,
Bahadur
,
V.
,
Shang
,
W.
,
Zhu
,
Y.
,
Buckley
,
D.
,
Dhinojwala
,
A.
, and
Sohal
,
M.
,
2013
, “
Influence of Substrate Elasticity on Droplet Impact Dynamics
,”
Langmuir
,
29
(
14
), pp.
4520
4524
.10.1021/la304767t
18.
Yilbas
,
B. S.
,
Hassan
,
G.
,
Al-Qahtani
,
H.
,
Al-Aqeeli
,
N.
,
Al-Sharafi
,
A.
,
Al-Merbati
,
A. S.
,
Baroud
,
T. N.
, and
Adukwu
,
J. A. E.
,
2019
, “
Stretchable Hydrophobic Surfaces and Self-Cleaning Applications
,”
Sci. Rep.
,
9
(
1
), pp.
1
13
.10.1038/s41598-019-50982-8
19.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Hassan
,
G.
,
Al-Qahtani
,
H.
, and
Sahin
,
A. Z.
,
2019
, “
Stretchable Hydrophobic Surfaces and Droplet Heating
,”
Int. J. Heat Fluid Flow
,
78
, p.
108435
.10.1016/j.ijheatfluidflow.2019.108435
20.
Weisensee
,
P. B.
,
Ma
,
J.
,
Shin
,
Y. H.
,
Tian
,
J.
,
Chang
,
Y.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2017
, “
Droplet Impact on Vibrating Superhydrophobic Surfaces
,”
Phys. Rev. Fluids
,
2
(
10
), p.
103601
.10.1103/PhysRevFluids.2.103601
21.
Chen
,
L.
,
Wu
,
J.
,
Li
,
Z.
, and
Yao
,
S.
,
2011
, “
Evolution of Entrapped Air Under Bouncing Droplets on Viscoelastic Surfaces
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
384
(
1–3
), pp.
726
732
.10.1016/j.colsurfa.2011.05.046
22.
Li
,
H.
, and
Zhang
,
K.
,
2019
, “
Dynamic Behavior of Water Droplets Impacting on the Superhydrophobic Surface: Both Experimental Study and Molecular Dynamics Simulation Study
,”
Appl. Surf. Sci.
,
498
, p.
143793
.10.1016/j.apsusc.2019.143793
23.
Chen
,
L.
,
Bonaccurso
,
E.
,
Gambaryan-Roisman
,
T.
,
Starov
,
V.
,
Koursari
,
N.
, and
Zhao
,
Y.
,
2018
, “
Static and Dynamic Wetting of Soft Substrates
,”
Curr. Opin. Colloid Interface Sci.
,
36
, pp.
46
57
.10.1016/j.cocis.2017.12.001
24.
Huang
,
L.
,
Song
,
J.
,
Wang
,
X.
,
Zhao
,
C.
,
Liu
,
Z.
, and
Liu
,
J.
,
2018
, “
Soft Elastic Superhydrophobic Cotton: A New Material for Contact Time Reduction in Droplet Bouncing
,”
Surf. Coat. Technol.
,
347
, pp.
420
426
.10.1016/j.surfcoat.2018.05.019
25.
Vasileiou
,
T.
,
Gerber
,
J.
,
Prautzsch
,
J.
,
Schutzius
,
T. M.
, and
Poulikakos
,
D.
,
2016
, “
Superhydrophobicity Enhancement Through Substrate Flexibility
,”
Proc. Natl. Acad. Sci., U. S. A.
,
113
(
47
), pp.
13307
13312
.10.1073/pnas.1611631113
26.
Chen
,
L.
,
Bonaccurso
,
E.
,
Deng
,
P.
, and
Zhang
,
H.
,
2016
, “
Droplet Impact on Soft Viscoelastic Surfaces
,”
Phys. Rev. E
,
94
(
6
), p.
063117
.10.1103/PhysRevE.94.063117
27.
Pegg
,
M.
,
Purvis
,
R.
, and
Korobkin
,
A.
,
2018
, “
Droplet Impact Onto an Elastic Plate: A New Mechanism for Splashing
,”
J. Fluid Mech.
,
839
, pp.
561
593
.10.1017/jfm.2018.60
28.
Knupp
,
P. M.
,
1999
, “
Winslow Smoothing on Two-Dimensional Unstructured Meshes
,”
Eng. Comput.
,
15
(
3
), pp.
263
268
.10.1007/s003660050021
29.
Walter Frei
,
2018
, “
Model Translational Motion With the Deformed Mesh Interfaces
,” COMSOL, Burlington, MA, accessed Jan. 4, 2020, https://www.comsol.com/blogs/model-translational-motion-with-the-deformed-mesh-interfaces/
30.
Šikalo
,
Š.
,
Wilhelm
,
H.-D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
62103
.10.1063/1.1928828
31.
Hu
,
J.
,
Xiong
,
X.
,
Xiao
,
H.
, and
Wan
,
K.
,
2015
, “
Effects of Contact Angle on the Dynamics of Water Droplet Impingement
,”
COMSOL Conference
, Boston, MA.
32.
COMSOL, Inc.
,
2017
, “
COMSOL Multiphysics
,” COMSOL, Burlington, MA.
33.
Abdelmagid
,
G.
,
Yilbas
,
B. S.
,
Al-Sharafi
,
A.
,
Al-Qahtani
,
H.
, and
Al-Aqeeli
,
N.
,
2019
, “
Water Droplet on Inclined Dusty Hydrophobic Surface: Influence of Droplet Volume on Environmental Dust Particles Removal
,”
RSC Adv.
,
9
(
7
), pp.
3582
3596
.10.1039/C8RA10092F
34.
Heib
,
F.
, and
Schmitt
,
M.
,
2016
, “
Statistical Contact Angle Analyses With the High-Precision Drop Shape Analysis (HPDSA) Approach: Basic Principles and Applications
,”
Coating
,
6
(
4
), p.
57
.10.3390/coatings6040057
35.
Bhattacharya
,
S.
,
Charonko
,
J. J.
, and
Vlachos
,
P. P.
,
2018
, “
Particle Image Velocimetry (PIV) Uncertainty Quantification Using Moment of Correlation (MC) Plane
,”
Meas. Sci. Technol.
,
29
(
11
), p.
115301
.10.1088/1361-6501/aadfb4
36.
Van Oss
,
C. J.
,
Good
,
R. J.
, and
Chaudhury
,
M. K.
,
1987
, “
Mechanism of DNA (Southern) and Protein (Western) Blotting on Cellulose Nitrate and Other Membranes
,”
J. Chromatogr. A
,
391
, pp.
53
65
.10.1016/S0021-9673(01)94304-3
37.
Jańczuk
,
B.
,
Wójcik
,
W.
, and
Zdziennicka
,
A.
,
1993
, “
Determination of the Components of the Surface Tension of Some Liquids From Interfacial Liquid-Liquid Tension Measurements
,”
J. Colloid Interface Sci.
,
157
(
2
), pp.
384
393
.10.1006/jcis.1993.1200
38.
Richard
,
D.
, and
Quéré
,
D.
,
2000
, “
Bouncing Water Drops
,”
Europhys. Lett.
,
50
(
6
), pp.
769
775
.10.1209/epl/i2000-00547-6
39.
Gerber
,
J.
,
Lendenmann
,
T.
,
Eghlidi
,
H.
,
Schutzius
,
T. M.
, and
Poulikakos
,
D.
,
2019
, “
Wetting Transitions in Droplet Drying on Soft Materials
,”
Nat. Commun.
,
10
(
1
), pp.
1
10
.10.1038/s41467-019-12093-w
40.
Mangili
,
S.
,
Antonini
,
C.
,
Marengo
,
M.
, and
Amirfazli
,
A.
,
2012
, “
Understanding the Drop Impact Phenomenon on Soft PDMS Substrates
,”
Soft Matter
,
8
(
39
), pp.
10045
10054
.10.1039/c2sm26049b
41.
Vasileiou
,
T.
,
Schutzius
,
T. M.
, and
Poulikakos
,
D.
,
2017
, “
Imparting Icephobicity With Substrate Flexibility
,”
Langmuir
,
33
(
27
), pp.
6708
6718
.10.1021/acs.langmuir.7b01412
42.
Clanet
,
C.
,
Béguin
,
C.
,
Richard
,
D.
, and
Quéré
,
D.
,
2004
, “
Maximal Deformation of an Impacting Drop
,”
J. Fluid Mech.
,
517
, pp.
199
208
.10.1017/S0022112004000904
43.
Chandra
,
S.
, and
Avedisian
,
C. T.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. London. Ser. A Math. Phys. Sci.
,
432
(
1884
), pp.
13
41
.10.1098/rspa.1991.0002
You do not currently have access to this content.