Abstract

The accurate identification of gas–liquid flow regimes in pipes remains a challenge for the chemical process industries. This paper proposes a method for flow regime identification that combines responses from a nonintrusive optical sensor with linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) for vertical upward gas–liquid flow of air and water. A total of 165 flow conditions make up the dataset, collected from an experimental air–water flow loop with a transparent test section (TS) of 27.3 mm inner diameter and 5 m length. Selected features extracted from the sensor response are categorized into feature group 1, average sensor response and standard deviation, and feature group 2 that also includes percentage counts of the calibrated responses for water and air. The selected features are used to train, cross validate, and test four model cases (LDA1, LDA2, QDA1, and QDA2). The LDA models produce higher average test classification accuracies (both 95%) than the QDA models (80% QDA1 and 45% QDA2) due to misclassification associated with the slug and churn flow regimes. Results suggest that the LDA1 model case is the most stable with the lowest average performance loss and is therefore considered superior for flow regime identification. In future studies, a larger dataset may improve stability and accuracy of the QDA models, and an extension of the conditions and parameters would be a useful test of applicability.

References

References
1.
Kaichiro
,
M.
, and
Ishii
,
M.
,
1984
, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
723
737
.10.1016/0017-9310(84)90142-X
2.
Nicklin
,
D. J.
,
1962
, “
Two-Phase Flow in Vertical Tubes, Trans
,”
Inst. Chem. Eng.
,
40
(
1
), pp.
61
68
.
3.
Spedding
,
P. L.
,
Woods
,
G. S.
,
Raghunathan
,
R. S.
, and
Watterson
,
J. K.
,
1998
, “
Vertical Two-Phase Flow
,”
Chem. Eng. Res. Des.
,
76
(
5
), pp.
628
634
.10.1205/026387698525153
4.
Oshinowo
,
T.
, and
Charles
,
M. E.
,
1974
, “
Vertical Two‐Phase Flow—Part I: Flow Pattern Correlations
,”
Can. J. Chem. Eng.
,
52
(
1
), pp.
25
35
.10.1002/cjce.5450520105
5.
Ruixi
,
D.
,
Da
,
Y.
,
Haihao
,
W.
,
Jing
,
G.
,
Ying
,
L.
,
Tong
,
Z.
, and
Lijun
,
Z.
,
2013
, “
Optical Method for Flow Patterns Discrimination, Slug and Pig Detection in Horizontal Gas Liquid Pipe
,”
Flow Meas. Instrum.
,
32
, pp.
96
102
.10.1016/j.flowmeasinst.2013.03.001
6.
Arunkumar
, S.
,
Adhavan
, J.
,
Venkatesan
, M.
,
Das
,
S. K.
, and
Balakrishnan
,
A. R.
,
2016
, “
Two Phase Flow Regime Identification Using Infrared Sensor and Volume of Fluids Method
,”
Flow Meas. Instrum.
,
51
, pp.
49
54
.10.1016/j.flowmeasinst.2016.08.012
7.
Sarkodie
,
K.
,
Fergusson-Rees
,
A.
, and
Diaz
,
P.
,
2018
, “
A Review of the Application of Non-Intrusive Infrared Sensing for Gas–Liquid Flow Characterization
,”
J. Comput. Multiphase Flows
,
10
(
1
), pp.
43
56
.10.1177/1757482X17748784
8.
Berthold
,
J. W.
,
Reed
,
S. E.
, and
Nash
,
C. A.
,
1994
, “
Fibre Optic Sensor System for Void Fraction Measurement in Aqueous Two-Phase Fluids
,”
Flow Meas. Instrum.
,
5
(
1
), pp.
3
13
.10.1016/0955-5986(94)90003-5
9.
Keska
,
J. K.
, and
Williams
,
B. E.
,
1999
, “
Experimental Comparison of Flow Pattern Detection Techniques for Air-Water Mixture Flow
,”
Exp. Therm. Fluid Sci.
,
19
(
1
), pp.
1
12
.10.1016/S0894-1777(98)10046-8
10.
Bertani
,
C.
,
De Salve
,
M.
,
Malandrone
,
M.
, Monni, G., and Panella, B.,
2010
, “
State-of-Art and Selection of Techniques in Multiphase Flow Measurement
,” Torino, Report No. RdS/2010/67.
11.
Elperin
,
T.
, and
Klochko
,
M.
,
2002
, “
Flow Regime Identification in a Two-Phase Flow Using Wavelet Transform
,”
Exp. Fluids
,
32
(
6
), pp.
674
682
.10.1007/s00348-002-0415-x
12.
Chakrabarti
,
D. P.
,
Das
,
G.
, and
Das
,
P. K.
,
2007
, “
Identification of Stratified Liquid-Liquid Flow Through Horizontal Pipes by a Non-Intrusive Optical Probe
,”
Chem. Eng. Sci.
,
62
(
7
), pp.
1861
1876
.10.1016/j.ces.2006.11.056
13.
Nguyen
,
V. T.
,
Euh
,
D. J.
, and
Song
,
C.-H.
,
2010
, “
An Application of the Wavelet Analysis Technique for the Objective Discrimination of Two-Phase Flow Patterns
,”
Int. J. Multiphase Flow
,
36
(
9
), pp.
755
768
.10.1016/j.ijmultiphaseflow.2010.04.007
14.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
15.
Yan
,
H.
,
Liu
,
Y. H.
, and
Liu
,
C. T.
,
2004
, “
Identification of Flow Regimes Using Back-Propagation Networks Trained on Simulated Data Based on a Capacitance Tomography Sensor
,”
Meas. Sci. Technol.
,
15
(
2
), pp.
432
436
.10.1088/0957-0233/15/2/017
16.
Shaban
,
H.
, and
Tavoularis
,
S.
,
2014
, “
Measurement of Gas and Liquid Flow Rates in Two-Phase Pipe Flows by the Application of Machine Learning Techniques to Differential Pressure Signals
,”
Int. J. Multiphase Flow
,
67
, pp.
106
117
.10.1016/j.ijmultiphaseflow.2014.08.012
17.
Xu
,
Y.
, and
Goodacre
,
R.
,
2018
, “
On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning
,”
J. Anal. Test.
,
2
(
3
), pp.
249
262
.10.1007/s41664-018-0068-2
18.
Nnabuife
,
S. G.
,
Pilario
,
K. E. S.
,
Lao
,
L.
,
Cao
,
Y.
, and
Shafiee
,
M.
,
2019
, “
Identification of Gas-Liquid Flow Regimes Using a Non-Intrusive Doppler Ultrasonic Sensor and Virtual Flow Regime Maps
,”
Flow Meas. Instrum.
,
68
, p.
101568
.10.1016/j.flowmeasinst.2019.05.002
19.
Hastie
,
T.
,
Tibshirani
,
R.
,
Friedman
,
J.
, and
Franklin
,
J.
,
2005
, “
The Elements of Statistical Learning: Data Mining, Inference and Prediction
,”
Math. Intell.
,
27
(
2
), pp.
83
85
.10.1007/BF02985802
20.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2012
,
Pattern Classification
,
Wiley
,
Hoboken, NJ
.
21.
Hiraoka
,
K.
,
Hamahira
,
M.
,
Hidai
,
K.
,
Mizoguchi
,
H.
,
Mishima
,
T.
, and
Yoshizawa
,
S.
,
2001
, “
Fast Algorithm for Online Linear Discriminant Analysis
,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
,
84
(
6
), pp.
1431
1441
.https://www.researchgate.net/publication/246164603_Fast_algorithm_for_online_linear_discriminant_analysis
22.
Tharwat
,
A.
,
2016
, “
Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial
,”
Int. J. Appl. Pattern Recognit.
,
3
(
2
), pp.
145
180
.10.1504/IJAPR.2016.079050
23.
Tharwat
,
A.
,
Gaber
,
T.
,
Ibrahim
,
A.
, and
Hassanien
,
A. E.
,
2017
, “
Linear Discriminant Analysis: A Detailed Tutorial
,”
AI Commun.
,
30
(
2
), pp.
169
190
.10.3233/AIC-170729
24.
Ameel
,
B.
,
De Kerpel
,
K.
,
Caniere
,
H.
,
T'Joen
,
C.
,
Huisseune
,
H.
, and
De Paepe
,
M.
,
2012
, “
Classification of Two Phase Flows Using Linear Discriminant Analysis and Expectation Maximization Clustering of Video Footage
,”
Int. J. Multiphase Flow
,
40
, pp.
106
112
.10.1016/j.ijmultiphaseflow.2011.11.011
25.
Li
,
H.
,
Ji
,
H.
,
Huang
,
Z.
,
Wang
,
B.
,
Li
,
H.
, and
Wu
,
G.
,
2016
, “
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
,”
Sensors
,
16
(
2
), p.
159
.10.3390/s16020159
26.
Wu
,
W.
,
Mallet
,
Y.
,
Walczak
,
B.
,
Penninckx
,
W.
,
Massart
,
D. L.
,
Heuerding
,
S.
, and
Erni
,
F.
,
1996
, “
Comparison of Regularized Discriminant Analysis Linear Discriminant Analysis and Quadratic Discriminant Analysis Applied to NIR Data
,”
Anal. Chim. Acta
,
329
(
3
), pp.
257
265
.10.1016/0003-2670(96)00142-0
27.
Wu
,
B.
,
Firouzi
,
M.
,
Mitchell
,
T.
,
Rufford
,
T. E.
,
Leonardi
,
C.
, and
Towler
,
B.
,
2017
, “
A Critical Review of Flow Maps for Gas-Liquid Flows in Vertical Pipes and Annuli
,”
Chem. Eng. J.
,
326
, pp.
350
377
.10.1016/j.cej.2017.05.135
28.
Tomiyama
,
A.
,
Celata
,
G. P.
,
Hosokawa
,
S.
, and
Yoshida
,
S.
,
2002
, “
Terminal Velocity of Single Bubbles in Surface Tension Force Dominant Regime
,”
Int. J. Multiphase Flow
,
28
(
9
), pp.
1497
1519
.10.1016/S0301-9322(02)00032-0
29.
Aoyama
,
S.
,
Hayashi
,
K.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2016
, “
Shapes of Ellipsoidal Bubbles in Infinite Stagnant Liquids
,”
Int. J. Multiphase Flow
,
79
, pp.
23
30
.10.1016/j.ijmultiphaseflow.2015.10.003
30.
Ishii
,
M.
, and
Chawla
,
T. C.
,
1979
, “
Local Drag Laws in Dispersed Two-Phase Flow
,”
STIN
,
80
, p.
25631
.
31.
Dutra
,
G.
,
Martelli
,
C.
,
Da Silva
,
M. J.
,
Patyk
,
R. L.
, and
Morales
,
R. E. M.
,
2017
, “
Air Flow Detection in Crude Oil by Infrared Light
,”
Sensors
,
17
(
6
), p.
1278
.10.3390/s17061278
32.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas–Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
33.
Guet
,
S.
,
Ooms
,
G.
, and
Oliemans
,
R. V. A.
,
2002
, “
Influence of Bubble Size on the Transition From Low-Re Bubbly Flow to Slug Flow in a Vertical Pipe
,”
Exp. Therm. Fluid Sci.
,
26
(
6–7
), pp.
635
641
.10.1016/S0894-1777(02)00172-3
34.
Das
,
R. K.
, and
Pattanayak
,
S.
,
1994
, “
Bubble to Slug Flow Transition in Vertical Upward Two-Phase Flow Through Narrow Tubes
,”
Chem. Eng. Sci.
,
49
(
13
), pp.
2163
2172
.10.1016/0009-2509(94)E0022-I
35.
Brauner
,
N.
, and
Barnea
,
D.
,
1986
, “
Slug/Churn Transition in Upward Gas-Liquid Flow
,”
Chem. Eng. Sci.
,
41
(
1
), pp.
159
163
.10.1016/0009-2509(86)85209-5
36.
Costigan
,
G.
, and
Whalley
,
P. B.
,
1997
, “
Slug Flow Regime Identification From Dynamic Void Fraction Measurements in Vertical Air-Water Flows
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
263
282
.10.1016/S0301-9322(96)00050-X
37.
Ishii
,
M.
, and
Grolmes
,
M. A.
,
1975
, “
Inception Criteria for Droplet Entrainment in Two-Phase Concurrent Film Flow
,”
AIChE J.
,
21
(
2
), pp.
308
318
.10.1002/aic.690210212
38.
Whalley
,
P. B.
,
1974
, “
Experimental Wave and Entrainment Measurements in Vertical Annular Two-Phase Flow
,”
Multi-Phase Flow Systems Symposium
, Strathclyde, Glasgow, Scotland, Apr. 2–4.
39.
Barnea
,
D.
,
1987
, “
A Unified Model for Predicting Flow-Pattern Transitions for the Whole Range of Pipe Inclinations
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
1
12
.10.1016/0301-9322(87)90002-4
40.
Maugis
,
C.
,
Celeux
,
G.
, and
Martin-Magniette
,
M.-L.
,
2011
, “
Variable Selection in Model-Based Discriminant Analysis
,”
J. Multivar. Anal.
,
102
(
10
), pp.
1374
1387
.10.1016/j.jmva.2011.05.004
41.
Yanjun
,
Z.
,
2015
, “
A Novel Identification Method of Two Phase Flow Based on LDA Feature Extraction and GRNN in ERT System
,”
Fifth International Symposium on Knowledge Acquisition and Modeling (KAM 2015)
, Atlantis Press.
You do not currently have access to this content.