Abstract

An experimental study on the flow of a highly viscous fluid through small diameter orifices was conducted. Pressure drops were measured for each of nine orifices, including orifices of nominal diameter 0.5, 1, and 3 mm and three different orifice thicknesses, over wide ranges of flow rates and temperatures. The fluid under consideration exhibits steep dependence of the properties (changes of several orders of magnitude) as a function of temperature and pressure and is also non-Newtonian at the lower temperatures. At small values of Reynolds number, an increase in aspect ratio (length/diameter ratio of the orifice) causes an increase in Euler number. It was also found that at extremely low Reynolds numbers, the Euler number was very strongly influenced by the Reynolds number, while the dependence becomes weaker as the Reynolds number increases toward the turbulent regime, and the Euler number tends to assume a constant value determined by the aspect ratio and the diameter ratio. A two-region (based on Reynolds number) model was developed to predict Euler number as a function of diameter ratio, aspect ratio, viscosity ratio, and generalized Reynolds number. It is shown that for such a highly viscous fluid with some non-Newtonian behavior, accounting for the shear rate through the generalized Reynolds number results in a considerable improvement in the predictive capabilities of the model. Over the laminar, transition, and turbulent regions, the model predicts 86% of the data within ±25% for the geometry and operating conditions investigated in this study.

References

References
1.
Johansen
,
F. C.
,
1930
, “
Flow Through Pipe Orifices at Low Reynolds Numbers
,”
Proc. R. Soc. London, Ser. A
,
126
(
801
), pp.
231
245
.10.1098/rspa.1930.0004
2.
Tuve
,
G. L.
, and
Sprenkle
,
R. E.
,
1933
, “
Orifice Discharge Coefficients for Viscous Liquids
,”
Instruments
,
6
(
1
), pp.
210
206
.
3.
Medaugh
,
F. W.
, and
Johnson
,
G. D.
,
1940
, “
Investigation of the Discharge and Coefficients of Small Circular Orifices
,”
Civ. Eng.
,
10
(
7
), pp.
422
424
.
4.
Smith
,
D.
, and
Walker
,
W. J.
,
1923
, “
Orifice Flow
,”
Proc., Inst. Mech. Eng.
,
104
(
1
), pp.
23
36
.10.1243/PIME_PROC_1923_104_007_02
5.
Lichtarowicz
,
A.
,
Duggins
,
R. K.
, and
Markland
,
E.
,
1965
, “
Discharge Coefficients for Incompressible, Non-Cavitating Flow Through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
210
219
.10.1243/JMES_JOUR_1965_007_029_02
6.
James
,
A. J.
,
1961
,
Flow Through a Long Orifice
, B.Sc. thesis,
Nottingham University
,
Nottingham, UK
.
7.
Sanderson
,
E. W.
,
1962
,
Flow Through Long Orifices
, B.Sc. thesis,
Nottingham University
,
Nottingham, UK
.
8.
Morgan
,
J. G. D.
,
1963
,
Flow Through Long Orifice at Low Reynolds Number
, B.Sc. thesis,
Nottingham University
,
Nottingham, UK
.
9.
Alvi
,
S. H.
,
Sridharan
,
K.
, and
Lakshmana Rao
,
N. S.
,
1978
, “
Loss Characteristics of Orifices and Nozzles
,”
ASME J. Fluids Eng.
,
100
(
3
), pp.
299
307
.10.1115/1.3448670
10.
Dagan
,
Z.
,
Weinbaum
,
S.
, and
Pfeffer
,
R.
,
1982
, “
An Infinite-Series Solution for the Creeping Motion Through an Orifice of Finite Length
,”
J. Fluid Mech.
,
115
(
1
), pp.
505
523
.10.1017/S0022112082000883
11.
Grose
,
R. D.
,
1983
, “
Orifice Flow at Low Reynolds Number
,”
J. Pipelines
,
3
(
3
), pp.
207
214
.
12.
Kiljanski
,
T.
,
1993
, “
Discharge Coefficients of Free Jets From Orifices at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
115
(
4
), pp.
778
781
.10.1115/1.2910212
13.
Sampson
,
R. A.
,
1891
, “
On Stokes's Current Function
,”
Philos. Trans. R. Soc. London. A
,
182
, pp.
449
518
.https://www.jstor.org/stable/90611
14.
Sisavath
,
S.
,
Jing
,
X.
,
Pain
,
C. C.
, and
Zimmerman
,
R. W.
,
2002
, “
Creeping Flow Through an Axisymmetric Sudden Contraction or Expansion
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
273
278
.10.1115/1.1430669
15.
Steffe
,
J. F.
, and
Salas-Valerio
,
W. F.
,
1990
, “
Orifice Discharge Coefficients for Power-Law Fluids
,”
J. Food Process Eng.
,
12
(
2
), pp.
89
98
.10.1111/j.1745-4530.1990.tb00043.x
16.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids: Fluid Mechanics
,
Wiley
,
New York
.
17.
Sorab
,
J.
,
Holdeman
,
H. A.
, and
Chui
,
G. K.
,
1993
, “
Viscosity Prediction for Multigrade Oils
,”
SAE Paper No. 932833.
18.
McNeil
,
D. A.
,
Addlesee
,
J.
, and
Stuart
,
A.
,
1999
, “
An Experimental Study of Viscous Flows in Contraction
,”
J. Loss Prev. Process Ind.
,
12
(
4
), pp.
249
258
.10.1016/S0950-4230(99)00008-X
19.
Sahin
,
B.
, and
Ceyhan
,
H.
,
1996
, “
Numerical and Experimental Analysis of Laminar Flow Through Square-Edged Orifice With Variable Thickness
,”
Trans. Inst. Meas. Control
,
18
(
4
), pp.
166
174
.10.1177/014233129601800401
20.
Hasegawa
,
T.
,
Suganuma
,
M.
, and
Watanabe
,
H.
,
1997
, “
Anomaly of Excess Pressure Drops of the Flow Through Very Small Orifices
,”
Phys. Fluids
,
9
(
1
), pp.
1
3
.10.1063/1.869170
21.
Kim
,
B. C.
,
Pak
,
B. C.
,
Cho
,
N. H.
,
Chi
,
D. S.
,
Choi
,
H. M.
,
Choi
,
Y. M.
, and
Park
,
K. A.
,
1997
, “
Effects of Cavitation and Plate Thickness on Small Diameter Ratio Orifice Meters
,”
Flow Meas. Instrum.
,
8
(
2
), pp.
85
92
.10.1016/S0955-5986(97)00034-4
22.
Ramamurthi
,
K.
, and
Nandakumar
,
K.
,
1999
, “
Characteristics of Flow Through Small Sharp-Edged Cylindrical Orifices
,”
Flow Meas. Instrum.
,
10
(
3
), pp.
133
143
.10.1016/S0955-5986(99)00005-9
23.
Valle
,
D. D.
,
Philippe
,
A. T.
, and
Carreau
,
P. J.
,
2000
, “
Characterizations of the Extensional Properties of Complex Fluids Using an Orifice Flowmeter
,”
J. Non-Newtonian Fluid Mech.
,
94
(
1
), pp.
1
13
.10.1016/S0377-0257(00)00126-9
24.
Sridhar
,
T.
,
1990
, “
Overview of the Project M1
,”
J. Non-Newtonian Fluid Mech.
,
35
(
2–3
), pp.
85
92
.10.1016/0377-0257(90)85039-2
25.
Yusuf
,
Y.
,
Baldygin
,
A.
,
Sabbagh
,
R.
,
Leitch
,
M.
,
Waghmare
,
P. R.
, and
Nobes
,
D. S.
, “
Effect of Aspect Ratio on Pressure Loss and Characteristics of Low Reynolds Number Flow Through Narrow Slots
,”
Proceedings of Second Thermal and Fluid Engineering Conference
,
Las Vegas, NV
, Apr. 2–5, pp.
1551
1562
.10.1615/TFEC2017.fne.018387
26.
Rituraj, Vacca
,
A.
,
2018
, “
Modeling the Flow of Non-Newtonian Fluids Through Sharp Orifices
,”
ASME J. Fluids Eng.
,
140
(
5
), p.
054501
.10.1115/1.4038659
27.
Chowdhury
,
M. R.
, and
Fester
,
V. G.
,
2012
, “
Modeling Pressure Losses for Newtonian and non-Newtonian Laminar and Turbulent Flow in Long Square Edged Orifices
,”
Chem. Eng. Res. Des.
,
90
(
7
), pp.
863
869
.10.1016/j.cherd.2011.11.001
28.
Marks
,
L. S.
,
1996
,
Marks' Standard Handbook for Mechanical Engineers
,
McGraw-Hill
,
New York
.
29.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1998
,
Fundamentals of Fluid Mechanics
,
Wiley
,
New York
.
30.
Taylor
,
B. N.
, and
Kuyatt
,
C. E.
,
1993
, “
Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results
,”
National Institute of Standards & Technology
,
Washington, DC
, Report No. NIST/TN 1297.
31.
Weissberg
,
H. L.
,
1962
, “
End Correction for Slow Viscous Flow Through Long Tubes
,”
Phys. Fluids
,
5
(
9
), pp.
1033
1036
.10.1063/1.1724469
32.
Morris
,
G. K.
, and
Garimella
,
S. V.
,
1998
, “
Orifice and Impingement Flow Fields in Confined Jet Impingement
,”
ASME J. Electron. Packag.
,
120
(
1
), pp.
68
72
.10.1115/1.2792288
33.
Ward-Smith
,
A. J.
,
1971
,
A Unified Treatment of the Flow and Pressure Drop Characteristics of Constructions Having Orifices With Square Edges
,
Pressure Losses in Ducted Flows
,
Butterworths, London
.
34.
SPSS,
2004
,
SigmaPlot 2001 for Windows Version 7.101
,
SPSS
,
Chicago, IL
.
You do not currently have access to this content.