Abstract

A computational study was conducted of axisymmetric droplet impingement on a flat surface at low droplet Reynolds numbers. The study was motivated by the problem of deposition of melted volcanic ash particles within aircraft gas turbine engines. The computations were performed using the combined level-set volume-of-fluid method for droplet Reynolds numbers between 0.05 and 10. The computational predictions were validated using existing experimental data. The computations indicate that contact radius increases over short time in proportion to the square root of time, in agreement with short-time analytical predictions. Typical assumptions made in development of approximate droplet impingement models were evaluated for low Reynolds number droplet impingement. The droplet shape was well approximated by a truncated spherical cap through most of the impingement process. The surface area over which the droplet spreads increases with increase in Reynolds number. The axial velocity component was found to be approximately independent of radial location over most of the droplet, and the radial velocity component was observed to vary log-normally in the axial coordinate and linearly in radius. The energy dissipation rate was distributed throughout the droplet for low Reynolds numbers cases, but became increasingly localized near the contact line as the Reynolds number increased past unity.

References

References
1.
Bechtel
,
S. E.
,
Bogy
,
D. B.
, and
Talke
,
F. E.
,
1981
, “
Impact of a Liquid Drop Against a Flat Surface
,”
IBM J. Res. Dev.
,
25
(
6
), pp.
963
971
. 10.1147/rd.256.0963
2.
Son
,
Y.
, and
Kim
,
C.
,
2009
, “
Spreading of Inkjet Droplet of Non-Newtonian Fluid on Solid Surface With Controlled Contact Angle at Low Weber and Reynolds Numbers
,”
J. Non-Newtonian Fluid Mech.
,
162
(
1–3
), pp.
78
87
.10.1016/j.jnnfm.2009.05.009
3.
Zable
,
J. L.
,
1977
, “
Splatter During Ink Jet Printing
,”
IBM J. Res. Dev.
,
21
(
4
), pp.
315
320
.10.1147/rd.214.0315
4.
Lim
,
T.
,
Han
,
S.
,
Chung
,
J.
,
Chung
,
J. T.
,
Ko
,
S.
, and
Grigoropoulos
,
C. P.
,
2009
, “
Experimental Study on Spreading and Evaporation of Inkjet Printed Pico-Liter Droplet on a Heated Substrate
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
431
441
.10.1016/j.ijheatmasstransfer.2008.05.028
5.
van Dam
,
D. B.
, and
Le Clerc
,
C.
,
2004
, “
Experimental Study of the Impact of an Ink-Jet Printed Droplet on a Solid Substrate
,”
Phys. Fluids
,
16
(
9
), pp.
3403
3414
.10.1063/1.1773551
6.
Alavi
,
S.
,
Passandideh-Fard
,
M.
, and
Mostaghimi
,
J.
,
2012
, “
Simulation of Semi-Molten Particle Impacts Including Heat Transfer and Phase Change
,”
J. Therm. Spray Technol.
,
21
(
6
), pp.
1278
1293
.10.1007/s11666-012-9804-8
7.
Attinger
,
D.
,
Zhao
,
Z.
, and
Poulikakos
,
D.
,
2000
, “
An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
544
556
.10.1115/1.1287587
8.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2229
2242
.10.1016/S0017-9310(01)00336-2
9.
Bertagnolli
,
M.
,
Marchese
,
M.
,
Jacucci
,
G.
,
Doltsinis
,
I.
,
St
., and
Noelting
,
S.
,
1995
, “
Modelling the Impact of Particles on a Rigid Substrate Under Plasma Spraying Conditions
,”
J. Therm. Spray Technol.
,
4
(
1
), pp.
41
49
.10.1007/BF02648527
10.
McDonald
,
A.
,
Lamontagne
,
M.
,
Moreau
,
C.
, and
Chandra
,
S.
,
2006
, “
Impact of Plasma-Sprayed Metal Particles on Hot and Cold Glass Surfaces
,”
Thin Solid Films
,
514
(
1–2
), pp.
212
222
.10.1016/j.tsf.2006.03.010
11.
Abuku
,
M.
,
Janssen
,
H.
,
Poesen
,
J.
, and
Roels
,
S.
,
2009
, “
Impact, Absorption and Evaporation of Raindrops on Building Facades
,”
Build. Environ.
,
44
(
1
), pp.
113
124
.10.1016/j.buildenv.2008.02.001
12.
Zhao
,
R.
,
Zhang
,
Q.
,
Tjugito
,
H.
, and
Cheng
,
X.
,
2015
, “
Granular Impact Cratering by Liquid Drops: Understanding Raindrop Imprints Through an Analogy to Asteroid Strikes
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
2
), pp.
342
347
.10.1073/pnas.1419271112
13.
Bergeron
,
V.
,
Bonn
,
D.
,
Martin
,
J. Y.
, and
Vovelle
,
L.
,
2000
, “
Controlling Droplet Deposition With Polymer Additives
,”
Nature
,
405
(
6788
), pp.
772
775
.10.1038/35015525
14.
Wirth
,
W.
,
Storp
,
S.
, and
Jacobsen
,
W.
,
1991
, “
Mechanisms Controlling Leaf Retention of Agricultural Spray Solutions
,”
Pest. Sci.
,
33
(
4
), pp.
411
420
.10.1002/ps.2780330403
15.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
16.
Li
,
S. C.
,
Libby
,
P. A.
, and
Williams
,
F. A.
,
1995
, “
Spray Impingement on a Hot Surface in Reacting Stagnation Flows
,”
AIAA J.
,
33
(
6
), pp.
1046
1055
.10.2514/3.12526
17.
Banine
,
V. Y.
,
Koshelev
,
K. N.
, and
Swinkels
,
G. H. P. M.
,
2011
, “
Physical Processes in EUV Sources for Microlithography
,”
J. Phys. D: Appl. Phys.
,
44
(
25
), p.
253001
.10.1088/0022-3727/44/25/253001
18.
Suli
,
L.
,
Zhengying
,
W.
,
Jun
,
D.
,
Pei
,
W.
, and
Bingheng
,
L.
,
2017
, “
A Numerical Analysis on the Metal Droplets Impacting and Spreading Out on the Substrate
,”
Rare Met. Mater. Eng.
,
46
(
4
), pp.
893
898
.10.1016/S1875-5372(17)30118-2
19.
Manzello
,
S. L.
, and
Yang
,
J. C.
,
2002
, “
On the Collision Dynamics of a Water Droplet Containing an Additive on a Heated Solid Surface
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
458
(
2026
), pp.
2417
2444
.10.1098/rspa.2002.0980
20.
Fu
,
S. P.
,
Sahu
,
R. P.
,
Diaz
,
E.
,
Robles
,
J. R.
,
Chen
,
C.
,
Rui
,
X.
,
Klie
,
R. F.
,
Yarin
,
A. L.
, and
Abiade
,
J. T.
,
2016
, “
Dynamic Study of Liquid Drop Impact on Supercooled Cerium Dioxide: Anti-Icing Behavior
,”
Langmuir
,
32
(
24
), pp.
6148
6162
.10.1021/acs.langmuir.6b00847
21.
Ju
,
J.
,
Yang
,
Z.
,
Yi
,
X.
, and
Jin
,
Z.
,
2019
, “
Experimental Investigation of the Impact and Freezing Processes of a Hot Water Droplet on an Ice Surface
,”
Phys. Fluids
,
31
(
5
), p.
057107
.10.1063/1.5094691
22.
Mishchenko
,
L.
,
Hatton
,
B.
,
Bahadur
,
V.
,
Taylor
,
J. A.
,
Krupenkin
,
T.
, and
Aizenberg
,
J.
,
2010
, “
Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets
,”
ACS Nano
,
4
(
12
), pp.
7699
7707
.10.1021/nn102557p
23.
Antonini
,
C.
,
Innocenti
,
M.
,
Horn
,
T.
,
Marengo
,
M.
, and
Amirfazli
,
A.
,
2011
, “
Understanding the Effect of Superhydrophobic Coatings on Energy Reduction in Anti-Icing Systems
,”
Cold Regions Sci. Technol.
,
67
(
1–2
), pp.
58
67
.10.1016/j.coldregions.2011.02.006
24.
Blake
,
J.
,
Thompson
,
D.
,
Raps
,
D.
, and
Strobl
,
T.
,
2015
, “
Simulating the Freezing of Supercooled Water Droplets Impacting a Cooled Substrate
,”
AIAA J.
,
53
(
7
), pp.
1725
1739
.10.2514/1.J053391
25.
Zhou
,
Q.
,
Li
,
N.
,
Chen
,
X.
,
Xu
,
T.
,
Hui
,
S.
, and
Zhang
,
D.
,
2008
, “
Liquid Drop Impact on Solid Surface With Application to Water Drop Erosion on Turbine Blades: Part II—Axisymmetric Solution and Erosion Analysis
,”
Int. J. Mech. Sci.
,
50
(
10–11
), pp.
1543
1558
.10.1016/j.ijmecsci.2008.08.002
26.
Corrigan
,
R.
, and
DeMiglio
,
R.
,
1985
, “
Effects of Precipitation on Wind Turbine Performance
,” NASA, Washington, DC, Report No.
NASA-TM-86986
.https://ntrs.nasa.gov/citations/19850019074
27.
Hulse-Smith
,
L.
,
Mehdizadeh
,
N.
, and
Chandra
,
S.
,
2005
, “
Deducing Drop Size and Impact Velocity From Circular Bloodstains
,”
J. Forensic Sci.
,
50
(
1
), pp.
1
10
.10.1520/JFS2003224
28.
Laan
,
N.
,
De Bruin
,
K. G.
,
Bartolo
,
D.
,
Josserand
,
C.
, and
Bonn
,
D.
,
2014
, “
Maximum Diameter of Impacting Liquid Droplets
,”
Phys. Rev. Appl.
,
2
(
4
), pp.
1
7
.10.1103/PhysRevApplied.2.044018
29.
Kim
,
H.
, and
Chun
,
J.
,
2001
, “
The Recoiling of Liquid Droplets Upon Collision With Solid Surfaces
,”
Phys. Fluids
,
13
(
3
), pp.
643
659
.10.1063/1.1344183
30.
Lee
,
J. B.
,
Derome
,
D.
,
Guyer
,
R.
, and
Carmeliet
,
J.
,
2016
, “
Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces
,”
Langmuir
,
32
(
5
), pp.
1299
1308
.10.1021/acs.langmuir.5b04557
31.
Clanet
,
C.
,
Béguin
,
C.
,
Richard
,
D.
, and
Quéré
,
D.
,
2004
, “
Maximal Deformation of an Impacting Drop
,”
J. Fluid Mech.
,
517
, pp.
199
208
.10.1017/S0022112004000904
32.
Gao
,
X.
, and
Li
,
R.
,
2014
, “
Spread and Recoiling of Liquid Droplets Impacting Solid Surfaces
,”
AIChE J.
,
60
(
7
), pp.
2683
2691
.10.1002/aic.14440
33.
Roisman
,
I. V.
,
Rioboo
,
R.
, and
Tropea
,
C.
,
2002
, “
Normal Impact of a Liquid Drop on a Dry Surface: Model for Spreading and Receding
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
458
(
2022
), pp.
1411
1430
.10.1098/rspa.2001.0923
34.
Bathel
,
B. F.
,
Stephen
,
N.
,
Johnson
,
L.
,
Ratner
,
A.
, and
Huisenga
,
M.
,
2007
, “
Prediction of Postcontact Parameters of Fluid Droplet Impact on a Smooth Surface
,”
AIAA J.
,
45
(
7
), pp.
1725
1733
.10.2514/1.24553
35.
Eggers
,
J.
,
Fontelos
,
M. A.
,
Josserand
,
C.
, and
Zaleski
,
S.
,
2010
, “
Drop Dynamics After Impact on a Solid Wall: Theory and Simulations
,”
Phys. Fluids
,
22
(
6
), p.
062101
.10.1063/1.3432498
36.
Roisman
,
I. V.
,
Berberović
,
E.
, and
Tropea
,
C.
,
2009
, “
Inertia Dominated Drop Collisions. I. On the Universal Flow in the Lamella
,”
Phys. Fluids
,
21
(
5
), p.
052103
.10.1063/1.3129282
37.
Visser
,
C. W.
,
Frommhold
,
P. E.
,
Wildeman
,
S.
,
Mettin
,
R.
,
Lohse
,
D.
, and
Sun
,
C.
,
2015
, “
Dynamics of High-Speed Micro-Drop Impact: Numerical Simulations and Experiments at Frame-to-Frame Times Below 100 Ns
,”
Soft Matter
,
11
(
9
), pp.
1708
1722
.10.1039/C4SM02474E
38.
Guo
,
Y.
,
Lian
,
Y.
, and
Sussman
,
M.
,
2016
, “
Investigation of Drop Impact on Dry and Wet Surfaces With Consideration of Surrounding Air
,”
Phys. Fluids
,
28
(
7
), p.
073303
10.1063/1.4958694
39.
Mani
,
M.
,
Mandre
,
S.
, and
Brenner
,
M. P.
,
2010
, “
Events Before Droplet Splashing on a Solid Surface
,”
J. Fluid Mech.
,
647
, pp.
163
185
.10.1017/S0022112009993594
40.
Riboux
,
G.
, and
Gordillo
,
J. M.
,
2014
, “
Experiments of Drops Impacting a Smooth Solid Surface: A Model of the Critical Impact Speed for Drop Splashing
,”
Phys. Rev. Lett.
,
113
(
2
), pp.
1
5
.10.1103/PhysRevLett.113.024507
41.
Kolinski
,
J. M.
,
Rubinstein
,
S. M.
,
Mandre
,
S.
,
Brenner
,
M. P.
,
Weitz
,
D. A.
, and
Mahadevan
,
L.
,
2012
, “
Skating on a Film of Air: Drops Impacting on a Surface
,”
Phys. Rev. Lett.
,
108
(
7
), pp.
1
5
.10.1103/PhysRevLett.108.074503
42.
Liu
,
Y.
,
Tan
,
P.
, and
Xu
,
L.
,
2013
, “
Compressible Air Entrapment in High-Speed Drop Impacts on Solid Surfaces
,”
J. Fluid Mech.
,
716
, p.
R9
.10.1017/jfm.2012.583
43.
Wang
,
Y.
, and
Bourouiba
,
L.
,
2017
, “
Drop Impact on Small Surfaces: Thickness and Velocity Profiles of the Expanding Sheet in the Air
,”
J. Fluid Mech.
,
814
, pp.
510
534
.10.1017/jfm.2017.18
44.
Xiong
,
W.
, and
Cheng
,
P.
,
2018
, “
Numerical Investigation of Air Entrapment in a Molten Droplet Impacting and Solidifying on a Cold Smooth Substrate by 3D Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
124
, pp.
1262
1274
.10.1016/j.ijheatmasstransfer.2018.04.056
45.
Langley
,
K.
,
Li
,
E. Q.
, and
Thoroddsen
,
S. T.
,
2017
, “
Impact of Ultra-Viscous Drops: Air-Film Gliding and Extreme Wetting
,”
J. Fluid Mech.
,
813
, pp.
647
666
.10.1017/jfm.2016.840
46.
Tang
,
C.
,
Qin
,
M.
,
Weng
,
X.
,
Zhang
,
X.
,
Zhang
,
P.
,
Li
,
J.
, and
Huang
,
Z.
,
2017
, “
Dynamics of Droplet Impact on Solid Surface With Different Roughness
,”
Int. J. Multiphase Flow
,
96
, pp.
56
69
.10.1016/j.ijmultiphaseflow.2017.07.002
47.
Kim
,
S. J.
,
Kim
,
J.
,
Moon
,
M. W.
,
Lee
,
K. R.
, and
Kim
,
H. Y.
,
2013
, “
Experimental Study of Drop Spreading on Textured Superhydrophilic Surfaces
,”
Phys. Fluids
,
25
(
9
), p.
092110
.10.1063/1.4821985
48.
Šikalo
,
Š.
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), p.
062103
.10.1063/1.1928828
49.
Almohammadi
,
H.
, and
Amirfazli
,
A.
,
2017
, “
Asymmetric Spreading of a Drop Upon Impact Onto a Surface
,”
Langmuir
,
33
(
23
), pp.
5957
5964
.10.1021/acs.langmuir.7b00704
50.
Izbassarov
,
D.
, and
Muradoglu
,
M.
,
2016
, “
Effects of Viscoelasticity on Drop Impact and Spreading on a Solid Surface
,”
Phys. Rev. Fluids
,
1
(
2
), pp.
1
18
.10.1103/PhysRevFluids.1.023302
51.
Venkatesan
,
J.
, and
Ganesan
,
S.
,
2019
, “
Computational Modeling of Impinging Viscoelastic Droplets
,”
J. Non-Newtonian Fluid Mech.
,
263
(
1
), pp.
42
60
.10.1016/j.jnnfm.2018.11.001
52.
Forney
,
L. J.
,
1990
, “
Droplet Impaction on a Supersonic Wedge—Consideration of Similitude
,”
AIAA J.
,
28
(
4
), pp.
650
654
.10.2514/3.10442
53.
Josserand
,
C.
, and
Thoroddsen
,
S. T.
,
2016
, “
Drop Impact on a Solid Surface
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
365
391
.10.1146/annurev-fluid-122414-034401
54.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
55.
Attané
,
P.
,
Girard
,
F.
, and
Morin
,
V.
,
2007
, “
An Energy Balance Approach of the Dynamics of Drop Impact on a Solid Surface
,”
Phys. Fluids
,
19
(
1
), p.
012101
.10.1063/1.2408495
56.
Rose
,
W. I.
,
1987
, “
Interaction of Aircraft and Explosive Eruption Clouds—A Volcanologist's Perspective
,”
AIAA J.
,
25
(
1
), pp.
52
58
.10.2514/3.9579
57.
Dacre
,
H. F.
,
Grant
,
A. L. M.
, and
Johnson
,
B. T.
,
2013
, “
Aircraft Observations and Model Simulations of Concentration and Particle Size Distribution in the Eyjafjallajökull Volcanic Ash Cloud
,”
Atmos. Chem. Phys.
,
13
(
3
), pp.
1277
1291
.10.5194/acp-13-1277-2013
58.
Kueppers
,
U.
,
Cimarelli
,
C.
,
Hess
,
K. U.
,
Taddeucci
,
J.
,
Wadsworth
,
F. B.
, and
Dingwell
,
D. B.
,
2014
, “
The Thermal Stability of Eyjafjallajökull Ash Versus Turbine Ingestion Test Sands
,”
J. Appl. Volcanol.
,
3
(
1
), pp.
1
11
.10.1186/2191-5040-3-4
59.
Song
,
W.
,
Hess
,
K.-U.
,
Damby
,
D. E.
,
Wadsworth
,
F. B.
,
Lavallée
,
Y.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2014
, “
Fusion Characteristics of Volcanic Ash Relevant to Aviation Hazards
,”
Geophys. Res. Lett.
,
41
(
7
), pp.
2326
2333
.10.1002/2013GL059182
60.
Song
,
W.
,
Lavallee
,
Y.
,
Hess
,
K. U.
,
Kueppers
,
U.
,
Cimarelli
,
C.
, and
Dingwell
,
D. B.
,
2016
, “
Volcanic Ash Melting Under Conditions Relevant to Ash Turbine Interactions
,”
Nat. Commun.
,
7
(
1
), p.
10795
.10.1038/ncomms10795
61.
Wadsworth
,
F. B.
,
Vasseur
,
J.
,
Aulock
,
F. W.
,
von
,
Hess
,
K.-U.
,
Scheu
,
B.
,
Lavallée
,
Y.
, and
Dingwell
,
D. B.
,
2014
, “
Nonisothermal Viscous Sintering of Volcanic Ash
,”
J. Geophys. Res.: Solid Earth
,
119
(
12
), pp.
8792
–87
50
.10.1002/2014JB011453
62.
Chen
,
W. R.
, and
Zhao
,
L. R.
,
2015
, “
Review—Volcanic Ash and Its Influence on Aircraft Engine Components
,”
Procedia Eng.
,
99
, pp.
795
803
.10.1016/j.proeng.2014.12.604
63.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), pp.
1
18
.10.1115/1.4006236
64.
Guffanti
,
M.
,
Casadevall
,
T.
, and
Budding
,
K.
,
2010
, “
Encounters of Aircraft With Volcanic Ash Clouds: A Compilation of Known Incidents, 1953–2009
,”
U.S. Geol. Survey Data Ser.
,
545
(1.0), pp.
1
12
.https://pubs.usgs.gov/ds/545/DS545.pdf
65.
Bonilla
,
C.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
M.S. thesis
,
The Ohio State University
,
Columbus, OH
.10.1115/1.4007057
66.
Shinozaki
,
M.
,
Roberts
,
K. A.
,
Van De Goor
,
B.
, and
William Clyne
,
T.
,
2013
, “
Deposition of Ingested Volcanic Ash on Surfaces in the Turbine of a Small Jet Engine
,”
Adv. Eng. Mater.
,
15
(
10
), p. 994.10.1002/adem.201200357
67.
Lawrence
,
M. J.
,
2013
, “
An Experimental Investigation of High Temperature Particle Rebound and Deposition Characteristics Applicable to Gas Turbine Fouling
,”
M.S. thesis
,
The Ohio State University
,
Columbus, OH
.https://etd.ohiolink.edu/!etd.send_file?accession=osu1376653488&disposition=attachment
68.
Dean
,
J.
,
Taltavull
,
C.
, and
Clyne
,
T. W.
,
2016
, “
Influence of the Composition and Viscosity of Volcanic Ashes on Their Adhesion Within Gas Turbine Aeroengines
,”
Acta Mater.
,
109
, pp.
8
16
.10.1016/j.actamat.2016.02.011
69.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.10.1002/adem.201500371
70.
Seksinsky
,
D.
,
2020
, “
Modeling Volcanic Ash Particle Impingement in Gas Turbine Engines
,” M.S. thesis,
University of Vermont
,
Burlington, VT
.
71.
Giordano
,
D.
,
Russell
,
J. K.
, and
Dingwell
,
D. B.
,
2008
, “
Viscosity of Magmatic Liquids: A Model
,”
Earth Planet. Sci. Lett.
,
271
(
1–4
), pp.
123
134
.10.1016/j.epsl.2008.03.038
72.
Schiaffino
,
S.
, and
Sonin
,
A. A.
,
1997
, “
Molten Droplet Deposition and Solidification at Low Weber Numbers
,”
Phys. Fluids
,
9
(
11
), pp.
3172
3187
.10.1063/1.869434
73.
Rioboo
,
R.
,
Marengo
,
M.
, and
Tropea
,
C.
,
2002
, “
Time Evolution of Liquid Drop Impact Onto Solid, Dry Surfaces
,”
Exp. Fluids
,
33
(
1
), pp.
112
124
.10.1007/s00348-002-0431-x
74.
Gordillo
,
L.
,
Sun
,
T. P.
, and
Cheng
,
X.
,
2018
, “
Dynamics of Drop Impact on Solid Surfaces: Evolution of Impact Force and Self-Similar Spreading
,”
J. Fluid Mech.
,
840
, pp.
190
214
.10.1017/jfm.2017.901
75.
Griebel
,
M.
, and
Klitz
,
M.
,
2017
, “
CLSVOF as a Fast and Mass-Conserving Extension of the Level-Set Method for the Simulation of Two-Phase Flow Problems
,”
Numer. Heat Transfer, Part B: Fundam.
,
71
(
1
), pp.
1
36
.10.1080/10407790.2016.1244400
76.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.10.1006/jcph.2000.6537
77.
Sun
,
D. L.
, and
Tao
,
W. Q.
,
2010
, “
A Coupled Volume-of-Fluid and Level Set (VOSET) Method for Computing Incompressible Two-Phase Flows
,”
Int. J. Heat Mass Transfer
,
53
(
4
), pp.
645
655
.10.1016/j.ijheatmasstransfer.2009.10.030
78.
Sethian
,
J. A.
,
1999
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
,
Cambridge, UK
.
79.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
80.
Croce
,
R.
,
Griebel
,
M.
, and
Schweitzer
,
M. A.
,
2009
, “
Numerical Simulation of Bubble and Droplet Deformation by a Level Set Approach With Surface Tension in Three Dimensions
,”
Int. J. Numer. Methods Fluids
,
62
(
9
), p. 993.10.1002/fld.2051
81.
Afkhami
,
S.
,
Zaleski
,
S.
, and
Bussmann
,
M.
,
2009
, “
A Mesh-Dependent Model for Applying Dynamic Contact Angles to VOF Simulations
,”
J. Comput. Phys.
,
228
(
15
), pp.
5370
5389
.10.1016/j.jcp.2009.04.027
82.
Vogel
,
A.
,
Diplas
,
S.
,
Durant
,
A. J.
,
Azar
,
A. S.
,
Sunding
,
M. F.
,
Rose
,
W. I.
,
Sytchkova
,
A.
,
Bonadonna
,
C.
,
Krüger
,
K.
, and
Stohl
,
A.
,
2017
, “
Reference Data Set of Volcanic Ash Physicochemical and Optical Properties
,”
J. Geophys. Res.: Atmos.
,
122
(
17
), pp.
9485
9514
.10.1002/2016JD026328
83.
Wilson
,
T. M.
,
Stewart
,
C.
,
Sword-Daniels
,
V.
,
Leonard
,
G. S.
,
Johnston
,
D. M.
,
Cole
,
J. W.
,
Wardman
,
J.
,
Wilson
,
G.
, and
Barnard
,
S. T.
,
2012
, “
Volcanic Ash Impacts on Critical Infrastructure
,”
Phys. Chem. Earth
,
45–46
, pp.
5
23
.10.1016/j.pce.2011.06.006
84.
Shipley
,
S.
, and
Sarna-Wojcicki
,
A.
,
1983
, “
Distribution, Thickness, and Mass of Late Pleistocene and Holocene Tephra From Major Volcanoes in the Northwestern United States: A Preliminary Assessment of Hazards From Volcanic Ejecta to Nuclear Reactors in the Pacific Northwest
,” United States Geological Survey Miscellaneous Field Studies Map MF-1435,
Report
.https://pubs.usgs.gov/mf/1983/1435/report.pdf
85.
Li
,
Z.
,
Giese
,
R. F.
,
Wu
,
W.
,
Sheridan
,
M. F.
, and
van Oss
,
C. J.
,
1997
, “
The Surface Thermodynamic Properties of Some Volcanic Ash Colloids
,”
J. Dispersion Sci. Technol.
,
18
(
3
), pp.
223
241
.10.1080/01932699708943732
86.
Philippi
,
J.
,
Lagrée
,
P. Y.
, and
Antkowiak
,
A.
,
2016
, “
Drop Impact on a Solid Surface: Short-Time Self-Similarity
,”
J. Fluid Mech.
,
795
, pp.
96
135
.10.1017/jfm.2016.142
87.
Hicks
,
P. D.
, and
Purvis
,
R.
,
2010
, “
Air Cushioning and Bubble Entrapment in Three-Dimensional Droplet Impacts
,”
J. Fluid Mech.
,
649
, pp.
135
163
.10.1017/S0022112009994009
88.
Thoroddsen
,
S. T.
,
Etoh
,
T. G.
, and
Takehara
,
K.
,
2003
, “
Air Entrapment Under an Impacting Drop
,”
J. Fluid Mech.
,
478
, pp.
125
134
.10.1017/S0022112002003427
89.
Thoroddsen
,
S. T.
,
Etoh
,
T. G.
,
Takehara
,
K.
,
Ootsuka
,
N.
, and
Hatsuki
,
Y.
,
2005
, “
The Air Bubble Entrapped Under a Drop Impacting on a Solid Surface
,”
J. Fluid Mech.
,
545
(
1
), pp.
203
212
.10.1017/S0022112005006919
90.
Madejski
,
J.
,
1976
, “
Solidification of Molten Metal Droplets Impinging on a Cold Surface
,”
Int. J. Heat Mass Transfer
,
19
(
9
), pp.
1009
1013
.10.1016/0017-9310(76)90183-6
91.
Wildeman
,
S.
,
Visser
,
C. W.
,
Sun
,
C.
, and
Lohse
,
D.
,
2016
, “
On the Spreading of Impacting Drops
,”
J. Fluid Mech.
,
805
, pp.
636
655
.10.1017/jfm.2016.584
You do not currently have access to this content.