Abstract

This research explores the creeping flow of a Jeffrey fluid through a narrow permeable slit with an application of blood flow through a planer hemodialyzer. The fluid motion of Jeffrey fluid in a two-dimensional conduit with nonhomogeneous boundary conditions due to constant reabsorption on the wall is a complicated problem. The viscous effect of Jeffrey fluid in a cross-sectional area of a narrow slit is computed with the help of continuity and momentum equation. The stress component, velocity profile, stream function, and pressure gradient show the behavior of creeping flow of Jeffrey fluid in a narrow slit. To find the explicit expression of velocity, pressure, stream function, and flux, recursive (Langlois) approach is adopted. Maximum velocity, shear stress, leakage flux, and fractional absorption on the wall are also calculated in this research. The mathematical results of this research are very helpful to study the blood flow through planer hemodialyzer; therefore, this theoretical model has significant importance in the field of renal physiology.

References

References
1.
Zhang
,
R.
,
He
,
X.
,
Yang
,
S. X.
, and
Li
,
X.
,
2005
, “
Perturbation Solution of Non-Newtonian Lubrication With the Convected Maxwell Model
,”
ASME J. Tribol.
,
127
(
2
), pp.
302
305
.10.1115/1.1843852
2.
Cecim
,
B.
, and
Winer
,
W. O.
,
1984
, “
Discussion: “Non-Newtonian Fluid Model Incorporated Into Elastohydrodynamic Lubrication of Rectangular Contacts
,”
ASME J. Tribol.
,
106
(
2
), pp.
275
282
.10.1115/1.3260903
3.
Oliver
,
D. R.
,
1988
, “
Load Enhancement Effects Due to Polymer Thickening in a Short Model Journal Bearing
,”
J. Non-Newtonian Fluid Mech.
,
30
(
2–3
), pp.
185
196
.10.1016/0377-0257(88)85024-9
4.
Spikes
,
H. A.
,
1994
, “
The Behavior of Lubricants in Contacts: Current Understanding and Future Possibilities
,”
Proc. Inst. Mech. Eng., Part J
,
208
(
1
), pp.
3
15
.10.1243/PIME_PROC_1994_208_345_02
5.
Gao
,
L. M.
,
Meng
,
Q. E.
,
Wang
,
F. C.
,
Yang
,
P. R.
, and
Jin
,
Z. M.
,
2007
, “
Comparison of Numerical Methods for Elastohydrodynamic Lubrication Analysis of Metal-on-Metal Hip Implants: Multi-Grid Verses Newton-Raphson
,”
Proc. Inst. Mech. Eng., Part J
,
221
(
2
), pp.
133
140
.10.1243/13506501JET228
6.
Bou-Saïd
,
B.
, and
Kane
,
M.
,
2005
, “
A Study of Roughness and Non-Newtonian Effects in Lubricated Contacts
,”
ASME J. Tribol.
,
127
(
3
), pp.
575
581
.10.1115/1.1866169
7.
Wang
,
F. C.
, and
Jin
,
Z. M.
,
2005
, “
Elastohydrodynamic Lubrication Modeling of Artificial Hip Joints Under Steady-State Conditions
,”
ASME J. Tribol.
,
127
(
4
), pp.
729
739
.10.1115/1.1924460
8.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
, Dynamics of Polymeric Liquids,Volume 1:
Fluid Mechanics
, Wiley, Hoboken, NJ
.
9.
Nallapu
,
S.
, and
Radhakrishnamacharya
,
G.
,
2014
, “
Jeffrey Fluid Flow Through Porous Medium in the Presence of Magnetic Field in Narrow Tubes
,”
Int. J Eng. Math
,
2014
, pp.
1
7
.10.1155/2014/713831
10.
Reddappa
,
B.
,
Sreenadh
,
S.
, and
Naidu
,
K. K.
,
2015
, “
Convective Couette Flow of a Jeffrey Fluid in an Inclined Channel When the Walls Are Provided With Porous Lining
,”
Adv. Appl. Sci. Res.
,
6
(
12
), pp.
69
75
.10.1016/j.asej.2015.08.019
11.
Kumar
,
P. M.
, and
Kavitha
,
A.
,
2018
, “
Three-Dimensional Flow of Jeffrey Fluid Between a Rotating and Stationary Disks With Suction
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
2351
2356
.10.1016/j.asej.2017.04.003
12.
Yamamoto
,
T.
,
Suga
,
T.
,
Nakamura
,
K.
, and
Mori
,
N.
,
2004
, “
The Gas Penetration Through Viscoelastic Fluids With Shear-Thinning Viscosity in a Tube
,”
ASME J. Fluids Eng.
,
126
(
2
), pp.
148
152
.10.1115/1.1669402
13.
Bariş
,
S.
,
2003
, “
Flow of a Second-Grade Visco-Elastic Fluid in a Porous Converging Channel
,”
Turk. J. Eng. Enviorn. Sci.
,
27
(
2
), pp.
73
82
.http://journals.tubitak.gov.tr/engineering/issues/muh-03-27-2/muh-27-2-1-0107-9.pdf
14.
Mirzakhalili
,
E.
, and
Nejat
,
A.
,
2015
, “
High-Order Solution of Viscoelastic Fluids Using the Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
137
(
3
), p. 031205.10.1115/1.4028779
15.
Rajagopal
,
K. R.
, and
Bhatnagar
,
R. K.
,
1995
, “
Exact Solutions for Some Simple Flows of an Oldroyd-B Fluid
,”
Acta Mech.
,
113
(
1–4
), pp.
233
239
.10.1007/BF01212645
16.
Nadeem
,
S.
,
Hussain
,
A.
, and
Majid
,
K.
,
2010
, “
Stagnation Flow of a Jeffrey Fluid Over a Shrinking Sheet
,”
Z. Naturforsch. A
,
65
(
6–7
), pp.
540
548
.10.1515/zna-2010-6-709
17.
Khan
,
M.
,
2005
, “
Partial Slip Effects on the Oscillatory Flows of a Fractional Jeffrey Fluid in a Porous Medium
,”
J. Porous Media
,
10
(
5
), pp.
473
488
.10.1615/JPorMedia.v10.i5.50
18.
Hayat
,
T.
,
Awais
,
M.
,
Asghar
,
S.
, and
Hendi
,
A. A.
,
2011
, “
Analytic Solution for the Magnetohydrodynamic Rotating Flow of Jeffrey Fluid in a Channel
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061201
.10.1115/1.4004300
19.
Vieru
,
D.
,
Fetecau
,
C.
, and
Fetecau
,
C.
,
2008
, “
Flow of a Viscoelastic Fluid With the Fractional Maxwell Model Between Two Side Walls Perpendicular to a Plate
,”
Appl. Math. Comput.
,
200
(
1
), pp.
459
464
.10.1016/j.amc.2007.11.017
20.
Vieru
,
D.
,
Fetecau
,
C.
,
Athar
,
M.
, and
Fetecau
,
C.
,
2009
, “
Flow of a Generalized Maxwell Fluid Induced by a Constantly Accelerating Plate Between Two Side Walls
,”
Z. Angew. Math. Phys.
,
60
(
2
), pp.
334
343
.10.1007/s00033-008-7138-7
21.
Jamil
,
M.
,
Vieru
,
D.
, and
Awan
,
A. U.
,
2011
, “
Unsteady Helical Flows of Maxwell Fluids Via Prescribed Shear Stresses
,”
Bull. Inst. Polytech. IASI
,
57
, pp.
137
148
.
22.
Haroon
,
T.
,
Siddiqui
,
A. M.
,
Shahzad
,
A.
, and
Smeltzer
,
J. H.
,
2017
, “
Steady Creeping Slip Flow of Viscous Fluid Through a Permeable Slit With
,”
Exponential Reabsorption Appl. Math. Sci.
,
11
(
50
), pp.
2477
2504
.10.12988/ams.2017.78266
23.
Haroon
,
T.
,
Siddiqui
,
A. M.
, and
Shahzad
,
A.
,
2016
, “
Creeping Flow of Viscous Fluid Through a Proximal Tubule With Uniform Reabsorption: A Mathematical Study
,”
Appl. Math. Sci.
,
10
(
16
), pp.
795
807
.10.12988/ams.2016.512739
24.
Ullah
,
H.
,
Sun
,
H.
,
Siddiqui
,
A. M.
, and
Haroon
,
T.
,
2019
, “
Creeping Flow Analysis of Slightly Non-Newtonian Fluid in a Uniformly Porous Slit
,”
J. Appl. Anal. Comput.
,
9
(
1
), pp.
140
158
.10.11948/2019.140
25.
Siddiqui
,
A. M.
,
Haroon
,
T.
, and
Shahzad
,
A.
,
2016
, “
Hydrodynamics of Viscous Fluid Through Porous Slit With Linear Absorption
,”
Appl. Math. Mech.
,
37
(
3
), pp.
361
378
.10.1007/s10483-016-2032-6
26.
Bhatti
,
K.
,
Bano
,
Z.
, and
Siddiqui
,
A. M.
,
2018
, “
Unsteady Stokes Flow Through Porous Channel With Periodic Suction and Injection With Slip Conditions
,”
Eur. J. Pure Appl. Math.
,
11
(
4
), pp.
937
945
.10.29020/nybg.ejpam.v11i4.3309
27.
Haroon
,
T.
,
Siddiqui
,
A. M.
, and
Shahzad
,
A.
,
2016
, “
Stokes Flow Through a Slit With Periodic Reabsorption: An Application to Renal Tubule
,”
Alex. Eng. J.
,
55
(
2
), pp.
1799
1810
.10.1016/j.aej.2016.03.036
28.
Siddiqui
,
A. M.
,
Haroon
,
T.
,
Kahshan
,
M.
, and
Iqbal
,
M. Z.
,
2015
, “
Slip Effects on the Flow of Newtonian Fluid in Renal Tubule
,”
J. Comput. Theor. Nanosci.
,
12
(
11
), pp.
4319
4328
.10.1166/jctn.2015.4358
29.
Hayat
,
T.
,
Noreen
,
S.
, and
Alsaedi
,
A.
,
2012
, “
Effect of an Induced Magnetic Field on Peristaltic Flow of Non-Newtonian Fluid in a Curved Channel
,”
J. Mech. Med. Biol.
,
12
(
3
), p.
1250058
.10.1142/S0219519411004721
30.
Bhatti
,
M. M.
,
Marin
,
M.
,
Zeeshan
,
A.
,
Ellahi
,
R.
, and
Abdelsalam
,
S. I.
,
2020
, “
Swimming of Motile Gyrotactic Microorganisms and Nanoparticles in Blood Flow Through Anisotropically Tapered Arteries
,”
Front. Phys.
,
8
, p.
95
.10.3389/fphy.2020.00095
31.
Nadeem
,
S.
,
Alblawi
,
A.
,
Muhammad
,
N.
,
Alarifi
,
I. M.
,
Issakhov
,
A.
, and
Mustafa
,
M. T.
,
2020
, “
A Computational Model for Suspensions of Motile Micro-Organisms in the Flow of Ferrofluid
,”
J. Mol. Liq.
,
298
, p.
112033
.10.1016/j.molliq.2019.112033
32.
Rashid
,
M.
,
Ansar
,
K.
, and
Nadeem
,
S.
,
2020
, “
Effects of Induced Magnetic Field for Peristaltic Flow of Williamson Fluid in a Curved Channel
,”
Phys. A
,
553
, p.
123979
.10.1016/j.physa.2019.123979
33.
Sadaf
,
H.
, and
Nadeem
,
S.
,
2020
, “
Fluid Flow Analysis of Cilia Beating in a Curved Channel in the Presence of Magnetic Field and Heat Transfer
,”
Can. J. Phys.
,
98
(
2
), pp.
191
197
.10.1139/cjp-2018-0715
34.
Ahmad
,
S.
,
Nadeem
,
S.
,
Muhammad
,
N.
, and
Khan
,
M. N.
,
2020
, “
Cattaneo–Christov Heat Flux Model for Stagnation Point Flow of Micropolar Nanofluid Toward a Nonlinear Stretching Surface With Slip Effects
,”
J Therm. Anal. Calorim.
,
139
(
6
), pp.
1
13
.10.1007/s10973-020-09504-2
35.
Ahmad
,
S.
,
Nadeem
,
S.
,
Muhammad
,
N.
, and
Issakhov
,
A.
,
2020
, “
Radiative SWCNT and MWCNT Nanofluid Flow of Falkner–Skan Problem With Double Stratification
,”
Phys. A
,
547
, p.
124054
.10.1016/j.physa.2019.124054
36.
Abbas
,
N.
,
Nadeem
,
S.
, and
Malik
,
M. Y.
,
2020
, “
On Extended Version of Yamada–Ota and Xue Models in Micropolar Fluid Flow Under the Region of Stagnation Point
,”
Phys. A
,
542
, p.
123512
.10.1016/j.physa.2019.123512
37.
Nadeem
,
S.
,
Ahmad
,
S.
, and
Muhammad
,
N.
,
2020
, “
Analysis of Ferrite Nanoparticles in Liquid
,”
Pramana
,
94
(
1
), p.
54
.10.1007/s12043-019-1913-1
38.
Langlois
,
W. E.
,
1963
, “
A Recursive Approach to the Theory of Slow, Steady-State Viscoelastic Flow
,”
Trans. Soc. Rheol.
,
7
(
1
), pp.
75
99
.10.1122/1.548946
39.
Kahshan
,
M.
,
Lu
,
D.
, and
Siddiqui
,
A. M.
,
2019
, “
A Jeffrey Fluid Model for a Porous-Walled Channel: Application to Flat Plate Dialyzer
,”
Sci. Rep.
,
9
(
1
), pp.
1
18
.10.1038/s41598-019-52346-8
40.
Marshall
,
E. A.
, and
Trowbridge
,
E. A.
,
1974
, “
Flow of a Newtonian Fluid Through a Permeable Tube: The Application to the Proximal Renal Tubule
,”
Bull. Math. Biol.
,
36
(
5
), pp.
457
476
.10.1016/S0092-8240(74)80043-1
41.
Marshall
,
E. A.
,
Trowbridge
,
E. A.
, and
Aplin
,
A. J.
,
1975
, “
Flow of a Newtonian Fluid Between Parallel Flat Permeable Plates—The Application to a Flat-Plate Hemodialyzer
,”
Math. Biosci.
,
27
(
1–2
), pp.
119
139
.10.1016/0025-5564(75)90029-2
You do not currently have access to this content.