Abstract

The analytical solution for steady viscous pressure-driven compressible isothermal gas flow through micro- and nanochannels with variable cross section for all Knudsen and all Mach number values is presented in this paper. The continuum one-dimensional governing equations are solved using the friction factor that is established in a special way to provide solutions for mass flow rate, pressure, and velocity distribution through the microchannels and nanochannels in the entire rarefaction regime. The friction factor, defined by the general boundary condition and generalized diffusion coefficient proposed by Beskok and Karniadakis (1999, “A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales,” J. Microscale Thermophys. Eng., 3, pp. 43–77), spreads the solution application to all rarefaction regimes from continuum to free molecular flow. The correlation between the product of friction factor and Reynolds number (Poiseuille number) and Knudsen number is established explicitly in the paper. Moreover, the obtained solution includes the inertia effect, which allows the application of the solution to both subsonic and supersonic gas flows, which was not shown earlier. The presented solution confirms the existence of the Knudsen minimum in the diverging, converging, and microchannels and nanochannels with constant cross section. The proposed solution is verified by comparison with experimental, analytical, and numerical results available in literature.

References

References
1.
Gad-el-Hak
,
M.
,
2001
,
MEMS Handbook
,
CRC Press
,
Boca Raton, FL
.
2.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N. R.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulations
,
Springer
,
New York
.
3.
Sharipov
,
F.
, and
Seleznev
,
V.
,
1998
, “
Data on Internal Rarefied Gas Flows
,”
J. Phys. Chem.
,
27
(
3
), pp.
657
706
.10.1063/1.556019
4.
Agrawal
,
A.
,
2011
, “
A Comprehensive Review on Gas Flow in Microchannels
,”
Int. J. Micro Nano Scale Transp.
,
2
(
1
), pp.
1
40
.10.1260/1759-3093.2.1.1
5.
Cercignani
,
C.
, and
Pagani
,
C. D.
,
1966
, “
Variational Approach to Boundary-Value Problems in Kinetic Theory
,”
Phys. Fluids
,
9
(
6
), p.
1167
.10.1063/1.1761816
6.
Lo
,
S. S.
, and
Loyalka
,
S. K.
,
1982
, “
An Efficient Computation of Near Continuum Rarefied Gas Flows
,”
J. Appl. Math, Phys. (ZAMP)
,
33
(
3
), pp.
419
424
.10.1007/BF00944451
7.
Sharipov
,
F.
,
1999
, “
Rarefied Gas Flow Through a Long Rectangular Channel
,”
J. Vac. Sci. Technol. A
,
17
(
5
), pp.
3062
3066
.10.1116/1.582006
8.
Graur
,
I.
, and
Ho
,
M. T.
,
2014
, “
Rarefied Gas Flow Through a Long Rectangular Channel of Variable Cross Section
,”
Vaccum
,
101
, pp.
328
332
.10.1016/j.vacuum.2013.07.047
9.
Graur
,
I.
,
Veltzke
,
T.
,
Méolans
,
J. G.
,
Ho
,
M. T.
, and
Thöming
,
J.
,
2015
, “
The Gas Flow Diode Effect: Theoretical and Experimental Analysis of Moderately Rarefied Gas Flows Through a Microchannel With Varying Cross Section
,”
Microfluid. Nanofluid.
,
18
(
3
), pp.
391
402
.10.1007/s10404-014-1445-4
10.
Duryodhan
,
V. S.
,
Singh
,
S., G.
, and
Agrawal
,
A.
,
2017
, “
Effect of Cross Aspect Ratio on Flow in Diverging and Converging Microchannels
,”
ASME J. Fluids Eng.
,
139
(
6
), p.
061203
.10.1115/1.4035945
11.
Stevanovic
,
N. D.
,
2007
, “
A New Analytical Solution of Microchannel Gas Flow
,”
J. Micromech. Microeng.
,
17
(
8
), pp.
1695
1702
.10.1088/0960-1317/17/8/036
12.
Milicev
,
S. S.
, and
Stevanovic
,
D. N.
,
2012
, “
A Microbearing Gas Flow With Different Walls' Temperatures
,”
Therm. Sci.
,
16
(
1
), pp.
119
132
.10.2298/TSCI110804086M
13.
Veltzke
,
T.
,
Baune
,
M.
, and
Thöming
,
J.
,
2012
, “
The Contribution of Diffusion to Gas Microflow: An Experimental Study
,”
Phys. Fluids
,
24
(
8
), p.
082004
.10.1063/1.4745004
14.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.10.1115/1.4000692
15.
Varade
,
V.
,
Duryodhan
,
V. S.
,
Agrawal
,
A.
,
Pradeep
,
A. M.
,
Ebrahimi
,
A.
, and
Roohi
,
E.
,
2015
, “
Low Mach Number Slip Flow Through Diverging Microchannel
,”
Comput. Fluids
,
111
, pp.
46
61
.10.1016/j.compfluid.2014.12.024
16.
Akbari
,
M.
,
Tamayol
,
A.
, and
Bahrami
,
M.
,
2013
, “
A General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071205
.10.1115/1.4023785
17.
Srinivasan
,
K.
,
Subbarao
,
P. M. V.
, and
Kale
,
S. R.
,
2017
, “
Experimental and Numerical Studies on Gas Flow Through Silicon Microchannels
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081205
.10.1115/1.4036249
18.
Ray
,
B.
,
Durst
,
F.
, and
Ray
,
S.
,
2020
, “
Pressure Drop and Flow Development in the Entrance Region of Microchannels With Second-Order Velocity Slip Condition and the Requirement for Development Length
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041302
.10.1115/1.4045610
19.
Ebrahimi
,
A.
, and
Roohi
,
E.
,
2017
, “
DSMC Investigation of Rarefied Gas Flow Through Diverging Micro and Nanochannels
,”
Microfluid. Nanofluid.
,
21
, p.
18
.10.1007/s10404-017-1855-1
20.
Ebrahimi
,
A.
, and
Roohi
,
E.
,
2016
, “
Flow and Thermal Fields Investigation in Divergent Micro/Nanochannels
,”
J. Therm. Eng.
,
2
(
2
), pp.
709
714
.10.18186/jte.53652
21.
Shah
,
N.
,
Gavasane
,
A.
,
Agrawal
,
A.
, and
Bhandarkar
,
U.
,
2017
, “
Comparison of Various Pressure Based Boundary Conditions for Three-Dimensional Subsonic DSMC Simulation
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031205
.10.1115/1.4037679
22.
Scanlon
,
T. J.
,
Roohi
,
E.
,
White
,
C.
,
Darbandi
,
M.
, and
Reese
,
J. M.
,
2010
, “
An Open Source, Parallel DSMC Code for Rarefied Gas Flows in Arbitrary Geometries
,”
Comput. Fluids
,
39
(
10
), pp.
2078
2089
.10.1016/j.compfluid.2010.07.014
23.
Zhao
,
Y. L.
, and
Wang
,
Z. M.
,
2019
, “
Lattice Boltzmann Simulation of Micro Gas Flows Over a Wide Range of Knudsen Numbers
,”
ASME J. Fluids Eng.
,
141
(
9
), p.
091401
.10.1115/1.4042886
24.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
, “Report:
A Model for flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
J. Microscale Thermophys. Eng.
,
3
(
1
), pp.
43
77
.10.1080/108939599199864
25.
Bahukudumbi
,
P.
, and
Beskok
,
A.
,
2003
, “
A Phenomenological Lubrication Model for the Entire Knudsen Regime
,”
J. Micromech. Microeng.
,
13
(
6
), pp.
873
884
.10.1088/0960-1317/13/6/310
26.
Williams
,
M. M. R.
,
1971
,
Proc. VII. Int. Symposium on Rarefied Gas Dynamics
,
D.
Dini
, ed.,
Editrice Tecnico Scientifica
,
Pisa
.
27.
Fukui
,
S.
, and
Kaneko
,
R.
,
1990
, “
A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems
,”
ASME J. Tribol.
,
112
(
1
), pp.
78
83
.10.1115/1.2920234
28.
Saad
,
M. A.
,
1985
,
Compressible Fluid Flow
,
Prentice Hall
,
Upper Saddle River, NJ
.
29.
Djordjević
,
V. D.
,
2004
,
Dynamics of One-Dimensional Fluid Flow
, 4th ed.,
Faculty of Mechanical Engineering, University of Belgrade
,
Belgrade, Serbia
.
30.
Roohi
,
E.
,
Darbandi
,
M.
, and
Mirjalili
,
V.
,
2008
, “
DSMC Solution of Supersonic Scale to Choked Subsonic Flow in Micro to Nano Channels
,”
ASME
Paper No. ICNMM2008-62282.10.1115/ICNMM2008-62282
31.
Garg
,
R.
, and
Agrawal
,
A.
,
2019
, “
Subsonic Choking in Microchannel Slip Flow: Isothermal or Adiabatic?
,”
AIP Adv.
,
9
(
12
), p.
125114
.10.1063/1.5129046
32.
Shan
,
X.
, and
Wang
,
M.
,
2015
, “
On Mechanisms of Choked Gas Flows in Microchannels
,”
Phys. Lett. A
,
379
(
38
), pp.
2351
2356
.10.1016/j.physleta.2015.07.036
33.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I. A.
, and
Méolans
,
J. G.
,
2007
, “
Mass Flow Rate Measurements in a Microchannel, From Hydrodynamic to Near Free Molecular Regimes
,”
J. Fluid Mech.
,
584
, pp.
337
356
.10.1017/S0022112007006374
34.
Hemadri
,
V.
,
Varade
,
V. V.
,
Agrawal
,
A.
, and
Bhandarkar
,
U. V.
,
2017
, “
Rarefied Gas Flow in Converging Microchannel in Slip and Early Transition Regimes
,”
Phys. Fluids
,
29
(
3
), p.
032002
.10.1063/1.4978057
You do not currently have access to this content.