Abstract

Turbulence is one of the most important phenomena in fluid dynamics. Large eddy simulation (LES) generally allows us to analyze smaller eddies than when using simulations based on unsteady Reynolds-averaged Navier–Stokes equations (URANS). In addition, the numerical solutions of LES show good agreements with experiments and numerical solutions based on direct numerical simulation. URANS simulations are, however, frequently used in academia and industry because LES computations are much more expensive compared with URANS simulations. In this investigation, an optimization of unsolved coefficients of the k–ω two equations model is performed on the transonic flow around T106A low-pressure turbine cascade to improve the accuracy of turbulence prediction with URANS. For the optimization approach, two-dimensional URANS is combined with ensemble Kalman filter which is one of the data assimilation techniques. In the assimilation process, a time- and spanwise-averaged LES result is used as pseudo-experimental data. Three-dimensional URANS simulations are performed for the evaluation of the optimization effect. URANS simulations are also applied to a different turbine cascade flow for the evaluation of the robustness of the optimized coefficients. These URANS results confirmed that the optimized coefficients improve the accuracy of turbulence prediction.

References

1.
Hah
,
C.
,
2019
, “
Study of Unsteady Flow Effects in a Multi-Stage Axial Compressor With High-Fidelity Numerical Simulations
,”
Proceedings of International Gas Turbine Congress
,
Toranomon, Tokyo, Japan
, Nov. 17–22, Paper No. IGTC-2019-021.
2.
Catalano
,
P.
, and
Amato
,
M.
,
2003
, “
An Evaluation of RANS Turbulence Modeling for Aerodynamic Applications
,”
Aerosp. Sci. Technol.
,
7
(
7
), pp.
493
509
.10.1016/S1270-9638(03)00061-0
3.
Wilcox
,
D. C.
,
1994
, “
Simulation of Transition With a Two-Turbulence Model
,”
AIAA J.
,
32
(
2
), pp.
247
255
.10.2514/3.59994
4.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.10.1016/0017-9310(72)90076-2
5.
Myong
,
H. K.
, and
Kasagi
,
N.
,
1990
, “
A New Approach to the Improvement of the k-ε Turbulence Model for Wall-Bounded Shear Flows
,”
JSME Int. J. Ser. 2
,
33
(
1
), pp.
63
72
.https://www.jstage.jst.go.jp/article/jsmeb1988/33/1/33_1_63/_article/-char/en
6.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One Equation Turbulence Model for Aerodynamic Flows
,”
AIAA Paper No. 92-0439.
7.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
8.
Stiger
,
D. R.
,
2002
, “
The Effect of Wakes on Separating Boundary Layers in Low Pressure Turbines
,” Doctoral thesis,
Cambridge University Engineering Department, Cambridge, UK
.
9.
Furukawa
,
M.
,
Inoue
,
M.
,
Saiki
,
M.
, and
Yamada
,
K.
,
1999
, “
The Role of Tip Leakage Vortex Breakdown in Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
121
(
3
), pp.
469
480
.10.1115/1.2841339
10.
Furukawa
,
M.
,
Yamasaki
,
M.
, and
Inoue
,
M.
,
1991
, “
A Zonal Approach for Navier-Stokes Computations of Compressible Cascade Flow Fields Using a TVD Finite Volume Method
,”
ASME J. Turbomach.
,
113
(
4
), pp.
573
582
.10.1115/1.2929118
11.
Furukawa
,
M.
,
Nakano
,
T.
, and
Inoue
,
M.
,
1992
, “
Unsteady Navier-Stokes Simulation of Transonic Cascade Flow Using an Unfactored Implicit Upwind Relaxation Scheme With Inner Iterations
,”
ASME J. Turbomach.
,
114
(
3
), pp.
599
606
.10.1115/1.2929184
12.
Shima
,
E.
, and
Jounouchi
,
T.
,
1996
, “
Role of CFD in Aeronautical Engineering (No.14) -AUSM Type Upwind Schemes
,”
14th NAL Symposium on Aircraft Computational Aerodynamics
, National Aerospace Laboratory, NAL SP-34, Tokyo, Japan, pp.
7
12
.
13.
Van Albada
,
G. D.
,
Van Leer
,
B.
, and
Robert
,
W. W.
,
1982
, “
A Comparative Study of Computational Methods in Cosmic Gas Dynamics
,”
Astron. Astrophys.
,
108
, pp.
76
84
.10.1007/978-3-642-60543-7_6
14.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
15.
Furukawa
,
M.
,
Saiki
,
K.
, and
Inoue
,
M.
,
1995
, “
Numerical Simulations of Three-Dimensional Viscous Flow in Diagonal Flow Impeller
,”
Proceedings of the 1995 ASME/JSME Fluids Engineering and Laser Anemometry Conference and Exhibition, Hilton Head, SC, pp. 29–36.
16.
Saito
,
S.
,
Furukawa
,
M.
,
Yamada
,
K.
,
Matsuoka
,
A.
, and
Niwa
,
N.
,
2021
, “
Wall-Resolved LES Analysis of Turbulent Flow Field With Shock Wave in a Transonic Axial Compressor Rotor
,”
Turbomachinery
,
49
(
3
), pp.
177
187
(in Japanese).https://ci.nii.ac.jp/naid/40022505246/en/?range=0&sortorder=0&start=0&count=0
17.
Denton
,
J. D.
,
1997
, “
Lessons From Rotor 37
,”
J. Therm. Sci.
,
6
(
1
), pp.
1
13
.10.1007/s11630-997-0010-9
18.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
19.
Burgers
,
G.
,
Jan van Leeuwen
,
P.
, and
Evensen
,
G.
,
1998
, “
Analysis Scheme in the Ensemble Kalman Filtter
,”
Mon. Weather Rev.
,
126
(
6
), pp.
1719
1724
.10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
20.
Bayes
,
T.
, and
Prince
,
R.
,
1763
, “
An Essay Towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, Communicated by Mr. Prince, in a Letter to John Canton, M. A. and F. R. S
,”
Philos. Trans. R. Soc. London
,
53
, pp.
370
418
.10.1098/rstl.1763.0053
21.
Willshaw
,
D. J.
, and
von der Malsburg
,
C.
,
1976
, “
How Patterned Neural Connections Can Be Set Up by Self-Organization
,”
Proc. R. Soc. Lond. B.
,
194
(
1117
), pp.
431
445
.10.1098/rspb.1976.0087
22.
Box
,
G. E. P.
, and
Muller
,
M. E.
,
1958
, “
A Note on the Generation of Random Normal Derivates
,”
Ann. Math. Stat.
,
29
(
2
), pp.
610
611
.10.1214/aoms/1177706645
23.
Sawada
,
K.
,
1995
, “
Convenient Visualization Method for Identifying Vortex Centers
,”
Trans. Jpn. Soc. Aeronaut. Space Sci.
,
38
(
120
), pp.
102
116
.https://ci.nii.ac.jp/naid/10002159604
24.
Arts
,
Y.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
,
2006
, “
Aero-Thermal Investigation of a Highly Loaded Transonic Liner Turbine Guide Vane Cascade
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.https://repository.tudelft.nl/islandora/object/uuid%3A1bdc512b-a625-4607-a339-3cc9b371215e
25.
Phan
,
H. M.
,
Duan
,
P. H.
, and
Dinh
,
C. T.
,
2020
, “
Numerical Aero-Thermal Study of High-Pressure Turbine Nozzle Guide Vane: Effects of Inflow Condition
,”
Phys. Fluids
,
32
(
3
), p.
034111
.10.1063/1.5144418
26.
Muller
,
J.
,
Mykhaskiv
,
O.
, and
Hückelheim
,
J. C.
,
2018
, “
STAMPS: A Finite Volume Solver Framework for Adjoint Codes Derived With Source-Transformation AD
,”
AIAA Paper No. 2018-2928.
10.2514/6.2018-2928
You do not currently have access to this content.