Abstract

Droplets generated at trailing edges of low-pressure steam turbines strike the leading edge of moving blades, resulting in severe damage by erosion. Although the trailing edges of stationary blades employed in the steam turbine industry are often sharpened to produce fine droplets, this process requires further investigation. In this study, water film flows on a plate and breakup patterns are observed and measured to investigate the breakup behavior and the effect of the plate edge thickness. First, to determine the general characteristics of droplet formation of water film flows, the droplet diameter frequency distributions, which significantly affect erosion damage, are measured for several flow conditions. Profiles of frequency distribution of the droplet diameters exhibit on approximately linear in a semilog graph. Water lumps formed on the plate edge are expressed as a spanwise wavelength and initiate the primary breakup of the water film, while fine droplets whose diameters are similar to the critical diameter are generated and are assumed to contribute significantly to erosion damage. The effect of edge thickness on droplet diameter frequency distribution and the spanwise wavelength are observed. The plate edge thickness does not affect the frequency distributions of the droplet diameter. However, it does affect the spanwise wavelength, which is related to the intermittent discharge of water from the edge. The spanwise wavelength and discharged water period become longer when the plate edge thickness increases. Based on an experiment involving the highest airflow velocity, the discharged water frequency is similar to that generated by a general turbine rotation speed.

References

1.
Haraguchi
,
M.
,
Nakamura
,
T.
,
Yoda
,
H.
,
Kudo
,
T.
, and
Senoo
,
S.
,
2013
, “
Nuclear Steam Turbine With 60 Inch Last Stage Blade
,”
ASME Paper No. ICONE21-16600.
10.1115/ICONE21-16600
2.
Senoo
,
S.
,
2012
, “
Development of Design Method for Supersonic Turbine Aerofoils Near the Tip of Long Blades in Steam Turbines: Part 1-Overall Configurations
,”
ASME Paper No. GT2012-68218.
10.1115/GT2012-68218
3.
Havakechian
,
S.
, and
Denton
,
J.
,
2015
, “
Three-Dimensional Blade-Stacking Strategies and Understanding of Flow Physics in Low-Pressure Steam Turbines-Part I: Three –Dimensional Stacking Mechanisms
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052603
.
4.
Moore
,
M. J.
, and
Sieverding
,
C. H.
,
1976
,
Two-Phase Steam Flow in Turbines and Separators Theory, Instrumentation, Engineering
,
A Von Karman Institute Book, Hemisphere Publishing Corporation
, pp.
298
302
.
5.
Crane
,
R. I.
,
2004
, “
Droplet Deposition in Steam Turbines
,”
Proc. Inst. Mech. Eng. J. Mech. Eng. Sci.
,
218
(
8
), pp.
859
870
.10.1243/0954406041474200
6.
Chaker
,
M.
,
Meher-Homji
,
C. B.
, and
Mee
,
T.
,
2004
, “
Inlet Fogging of Gas Turbine Engines: Part B-Fog Droplet Sizing Analysis, Nozzle Types, Measurement and Testing
,”
ASME J. Eng. Gas Turbine Power
,
126
(
3
), pp.
559
570
.10.1115/1.1712982
7.
Hamdani
,
A.
,
Utamura
,
M.
,
Shibata
,
T.
, and
Myoren
,
C.
,
2015
, “
Numerical Simulations of Droplet Coalescence in an L-Shaped Duct for Inlet Fogging of Gas Turbine Engines
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
7
(
1
), pp.
1
9
.10.38036/jgpp.7.1_1
8.
Springer
,
G. S.
,
1976
,
Erosion by Liquid Impact
,
Scripta Publishing Co
,
Fort Worth, TX
.
9.
Krzyzanowski
,
J.
, and
Szprengiel
,
Z.
,
1978
, “
The Influence of Droplet Size on the Turbine Blading Erosion Hazard
,”
ASME J. Eng. Power
,
100
(
4
), pp.
561
565
.10.1115/1.3446394
10.
Tsubouchi
,
K.
,
Yasugahira
,
N.
,
Yoshida
,
S.
,
Kaneko
,
R.
, and
Sato
,
T.
,
1990
, “
An Evaluation of Water Droplet Erosion for Advanced Large Steam Turbine
,”
ASME Paper No. G00518.
11.
Koizumi
,
M.
,
Utamura
,
M.
,
Yano
,
T.
,
Nakano
,
S.
,
Shibata
,
T.
, and
Myoren
,
C.
,
2016
, “
CFD Analysis of Water Droplet Behavior in Axial Flow Compressor
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
8
(
3
), pp.
12
19
.10.38036/jgpp.8.3_12
12.
Hammitt
,
F. G.
,
Krzeczkowski
,
S.
, and
Krzyżanowski
,
J.
,
1981
, “
Liquid Filem and Droplet Stability Consideration as Applied to Wet Steam Flow
,”
Forschung. Ing.-Wes
,
47
(
1
), pp.
1
14
.10.1007/BF02560457
13.
Flock
,
A. K.
,
Guildenbecher
,
D. R.
,
Chen
,
J.
,
Sojka
,
P. E.
, and
Bauer
,
H. J.
,
2012
, “
Experimental Statistics of Droplet Trajectory and Air Flow During Aerodynamic Fragmentation of Liquid Drops
,”
Int. J. Multiphase Flow
,
47
, pp.
37
49
.10.1016/j.ijmultiphaseflow.2012.06.008
14.
Shinjo
,
J.
, and
Umemura
,
A.
,
2010
, “
Simulation of Liquid Jet Primary Breakup: Dynamics of Ligament and Droplet Formation
,”
Int. J. Multiphase Flow
,
36
(
7
), pp.
513
532
.10.1016/j.ijmultiphaseflow.2010.03.008
15.
Jalaal
,
M.
, and
Mehravaran
,
K.
,
2012
, “
Fragmentation of Falling Liquid Droplets in Bag Breakup Mode
,”
Int. J. Multiphase Flow
,
47
, pp.
115
132
.10.1016/j.ijmultiphaseflow.2012.07.011
16.
Lefebvre
,
A. H.
,
1983
,
Gas Turbine Combustion
,
Taylor & Francis
,
Bristol, PA
.
17.
Gepperth
,
S.
,
Guildenbecher
,
D.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2010
, “
Pre-Filming Primary Atomization: Experiments and Modeling
,”
ILASS-Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems
,
Brno, Czech Republic
.https://www.ilasseurope.org/ICLASS/ilass2010/FILES/FULL_PAPERS/025.pdf
18.
Warncke
,
K.
,
Gepperth
,
S.
,
Sauer
,
B.
,
Sadiki
,
A.
,
Janicka
,
J.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2017
, “
Experimental and Numerical Investigation of the Primary Breakup of an Airblasted Liquid Sheet
,”
Int. J. Multiphase Flow
,
91
, pp.
208
224
.10.1016/j.ijmultiphaseflow.2016.12.010
19.
Tanuma
,
T.
,
2017
,
Advances in Steam Turbines for Modern Power Plants
,
Woodhead Publishing
,
Sawston, UK
.
20.
Matsuzaki
,
Y.
,
Nakano
,
S.
,
Takeda
,
Y.
, and
Satou
,
K.
,
2015
, “
A Fundamental Study on Breakup Patterns of Water Film Splashed Into Airflows
,”
Proc. Int. Conf. Power Eng.
,
12
.
21.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
22.
Cai
,
X.
,
Li
,
S.
,
Lui
,
H.
,
Gao
,
W.
, and
Yang
,
B.
,
2015
, “
A Novel Probe for Measuring Fine and Coarse Droplets of Wet Steam in a 330 MW Steam Turbine
,”
Proceedings International Gas Turbine Congress
, pp.
264
268
.
23.
Bosdas
,
I.
,
Mansour
,
M.
,
Kalfas
,
A.
,
Abhari
,
R.
, and
Senoo
,
S.
,
2017
, “
Unsteady Flow Field and Coarse Droplet Measurements in the Last Stage of a Low-Pressure Steam Turbine With Supersonic Airfoils Near the Blade Tip
,”
ASME J. Eng. Gas Turbines Power
,
139
(
9
), p.
091601
.10.1115/1.4036011
24.
Young
,
J.
,
Yau
,
K.
, and
Walters
,
P.
,
1988
, “
Fog Droplet Deposition and Coarse Water Formation in Low-Pressure Steam Turbine: A Combined Experimental and Theoretical Analysis
,”
ASME J. Turbomach.
,
110
(
2
), pp.
163
172
.10.1115/1.3262176
25.
Rossi
,
P.
,
Raheem
,
A.
, and
Abhari
,
R. S.
,
2018
, “
Numerical Model of Liquid Film Formation and Breakup in Last Stage of a Low-Pressure Steam Turbine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032602
.10.1115/1.4037912
26.
Schlichting
,
H.
,
1979
,
Boundary-Layer Theory
,
McGraw-Hill Book Company
,
New York
.
27.
von Kármán
,
T.
,
1930
, “
Mechanische ähnlichkeit Und Turbulenz
,”
Proceedings of Third Congress of Applied Mechanics
, pp.
86
93
.
28.
Sharp
,
D. H.
,
1984
, “
An Overview of Rayleigh-Taylor Instabilty
,”
Phys. D, Nonlinear Phenom.
,
12
(
1–3
), pp.
3
18
.10.1016/0167-2789(84)90510-4
29.
Aiger
,
M. M.
,
1986
, “
Charakterisierung Der Bestimmenden Einflussgrossen Bei Der Luftgestutzten Zerfalls Von Flussigkeitsfilmen
,” Ph.D. thesis,
Institut fur Thermisshc Stromungsmaschinen (ITS), Universitat Karlsruhe (TH), Karlsruhe, Germany
.
30.
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2013
, “
Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer
,”
ASME Paper No. GT2013-94033.
10.1115/GT2013-94033
31.
Braun
,
S.
,
Wieth
,
L.
,
Holz
,
S.
,
Dauch
,
T. F.
,
Keller
,
M. C.
,
Chaussonnet
,
G.
,
Gepperth
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2019
, “
Numerical Prediction of Air-Assisted Primary Atomization Using Smoothed Particle Hydrodynamics
,”
Int. J. Multiphase Flow
,
114
, pp.
303
315
.10.1016/j.ijmultiphaseflow.2019.03.008
32.
Villermaux
,
E.
,
1998
, “
On the Role of Viscosity in Shear Instabilities
,”
Phys. Fluids
,
10
(
2
), pp.
368
373
.10.1063/1.869529
You do not currently have access to this content.