Abstract

The evolution of single and twin oblique particle clouds in stagnant water was investigated using a series of laboratory experiments and the effects of controlling parameters such as sand mass and nozzle spacing were studied. The time variations of particle cloud properties such as frontal position, horizontal and vertical centroids, cloud width, and frontal velocity were measured using image analysis and particle image velocimetry (PIV) techniques. The entrainment coefficients were extracted from the measurements. It was found that the main vortex motion of the frontal heads altered after the collision and a new integrated frontal head was formed. The effects of release angle and particle interactions were studied by comparing the time histories of maximum centerline velocities. It was found that the centerline velocity of twin oblique particle clouds in comparison with twin vertical particle clouds increased with increasing nozzle spacing. The time history of the ratio of horizontal to vertical centroids in oblique particle clouds determined the potential location of sand particles and a practical model was developed to determine the size and location of particle clouds with time. The time histories of normalized cloud width indicated a significant change after the frontal head collision. The particle interactions due to frontal head collision in twin oblique particle clouds significantly increased the cloud width until particle clouds reached the swarm phase. The time at which twin oblique particle clouds reached the swarm phase was recorded and a linear model was proposed to link the time to reach the swarm phase with the cloud aspect ratio and nozzle spacing.

References

1.
Zhao
,
B.
,
Law
,
A. W. K.
,
Eric Adams
,
E.
,
Shao
,
D.
, and
Huang
,
Z.
,
2012
, “
Effect of Air Release Height on the Formation of Sediment Thermals in Water
,”
J. Hydraul. Res.
,
50
(
5
), pp.
532
540
.10.1080/00221686.2012.715094
2.
Lai
,
A. C. H.
,
Zhao
,
B.
,
Law
,
A. W. K.
, and
Adams
,
E. E.
,
2013
, “
Two-Phase Modeling of Sediment Clouds
,”
Environ. Fluid Mech.
,
13
(
5
), pp.
435
463
.10.1007/s10652-013-9271-x
3.
Wang
,
X.
, and
Kikkert
,
G. A.
,
2014
, “
Behaviour of Oblique Jets Released in a Moving Ambient
,”
J. Hydraul. Res.
,
52
(
4
), pp.
490
501
.10.1080/00221686.2014.881926
4.
Er
,
J. W.
,
Law
,
A.
,
Adams
,
E.
, and
Zhao
,
B.
,
2016
, “
Open-Water Disposal of Barged Sediments
,”
J. Waterw. Port Coast. Ocean Eng.
,
142
(
5
), pp.
1
16
.10.1061/(ASCE)WW.1943-5460.0000341
5.
Chan
,
S. N.
,
Lee
,
K. W. Y.
, and
Lee
,
J. H. W.
,
2014
, “
Numerical Modeling of Horizontal Sediment-Laden Jets
,”
Environ. Fluid Mech.
,
14
(
1
), pp.
173
200
.10.1007/s10652-013-9287-2
6.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2012
, “
Experimental Study of Sand Jet Front in Water
,”
Int. J. Multiphase Flow
,
40
, pp.
19
37
.10.1016/j.ijmultiphaseflow.2011.11.008
7.
Azimi
,
A.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2012b
, “
Computational Investigation on Vertical Slurry Jets
,”
Int. J. Multiphase Flow
,
47
, pp.
94
114
.10.1016/j.ijmultiphaseflow.2012.07.002
8.
Moghadaripour
,
M.
,
Azimi
,
A. H.
, and
Elyasi
,
S.
,
2017a
, “
Experimental Study of Oblique Particle Clouds in Water
,”
Int. J. Multiphase Flow
,
91
, pp.
101
119
.10.1016/j.ijmultiphaseflow.2017.01.005
9.
Moghadaripour
,
M.
,
Azimi
,
A. H.
, and
Elyasi
,
S.
,
2017b
, “
Experimental Study of Particle Clouds in Stagnant Water
,”
ASCE J. Eng. Mech.
,
143
(
9
), p.
04017082
.10.1061/(ASCE)EM.1943-7889.0001301
10.
Bush
,
J. W. M.
,
Thurber
,
B. A.
, and
Blanchette
,
F.
,
2003
, “
Particle Clouds in Homogeneous and Stratified Environments
,”
J. Fluid Mech.
,
489
(
489
), pp.
29
54
.10.1017/S0022112003005160
11.
Azimi
,
A. H.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2011
, “
Effect of Particle Size on the Characteristics of Sand Jet in Water
,”
ASCE J. Eng. Mech.
,
137
(
12
), pp.
822
834
.10.1061/(ASCE)EM.1943-7889.0000283
12.
Lai
,
A. C. H.
, and
Lee
,
J. H. W.
,
2012
, “
Dynamic Interaction of Multiple Buoyant Jets
,”
J. Fluid Mech.
,
708
, pp.
539
575
.10.1017/jfm.2012.332
13.
Zhao
,
B.
,
Law
,
A. W. K.
,
Adams
,
E. E.
, and
Er
,
J. W.
,
2014
, “
Formation of Particle Clouds
,”
J. Fluid Mech.
,
746
(
1
), pp.
193
213
.10.1017/jfm.2014.121
14.
Lai
,
A. C. H.
,
Wang
,
R. Q.
,
Law
,
A. W. K.
, and
Adams
,
E. E.
,
2016a
, “
Modeling and Experiments of Poly-Disperse Particle Clouds
,”
Environ. Fluid Mech.
,
16
(
4
), pp.
875
898
.10.1007/s10652-016-9462-3
15.
Lai
,
A. C. H.
,
Chan
,
S. N.
,
Law
,
A. W.
, and
Adams
,
E. E.
,
2016b
, “
Spreading Hypothesis of a Particle Plume
,”
J. Hydraul. Eng.
,
142
(
12
), p.
04016065
.10.1061/(ASCE)HY.1943-7900.0001211
16.
Sharif
,
F.
, and
Azimi
,
A. H.
,
2020
, “
Particle Cloud Dynamics in Stagnant Water
,”
Int. J. Multiphase Flow
,
125
, p.
103197
.10.1016/j.ijmultiphaseflow.2019.103197
17.
Sharif
,
F.
, and
Azimi
,
A. H.
,
2021
, “
Effects of Velocity Ratio on Dynamics of Sand-Water Coaxial Jets
,”
Int. J. Multiphase Flow
,
140
, p.
103643
.10.1016/j.ijmultiphaseflow.2021.103643
18.
Lai
,
A. C. H.
,
Adams
,
E. E.
, and
Law
,
A. W. K.
,
2018
, “
Mass Loss to the Trailing Stem of a Sediment Cloud
,”
J. Hydraul. Eng.
,
144
(
4
), p.
06018003
.10.1061/(ASCE)HY.1943-7900.0001417
19.
Manzouri
,
M.
, and
Azimi
,
A. H.
,
2019
, “
A Study of Mound Formation by Discharging Sand Particles Through Oblique Pipes in Stagnant Water
,”
Int. J. Sediment Res.
,
34
(
6
), pp.
564
576
.10.1016/j.ijsrc.2019.05.003
20.
Manzouri
,
M.
, and
Azimi
,
A. H.
,
2019b
, “
Effects on Oily Sand Jet Evolution From Impact Momentum and Channelization of Particles Through an Immiscible Interface
,”
Int. J. Multiphase Flow
,
121
, p.
103124
.10.1016/j.ijmultiphaseflow.2019.103124
21.
Bond
,
D.
, and
Johari
,
H.
,
2005
, “
Effects of Initial Geometry on the Development of Thermals
,”
Exp. Fluids
,
39
(
3
), pp.
591
599
.10.1007/s00348-005-0997-1
22.
Azimi
,
A. H.
,
2019
, “
Experimental Investigation on the Motion of Particle Cloud in Viscous Fluids
,”
ASME J. Fluids Eng.
,
141
(
3
), p.
031202
.10.1115/1.4041121
23.
Janati
,
M.
, and
Azimi
,
A. H.
,
2021
, “
Mixing of Twin Particle Clouds in Stagnant Water
,”
ASCE J. Eng. Mech.
,
147
(
5
), p.
04021022
.10.1061/(ASCE)EM.1943-7889.0001919
24.
Rahimipour
,
H.
, and
Wilkinson
,
D.
,
1992
, “
Dynamic Behaviour of Particle Clouds
,”
Proceedings of the 11th Australasian Fluid Mechanics Conference
, Vols.
1 and 2
,
University of Tasmania
,
Hobart, Australia
, Dec. 14–18, pp.
743
746
.https://people.eng.unimelb.edu.au/imarusic/proceedings/11/Rahimipour.pdf
25.
Noh
,
Y.
, and
Fernando
,
H. J. S.
,
1993
, “
The Transition in the Sedimentation Pattern of a Particle Cloud
,”
Phys. Fluids
,
5
(
12
), pp.
3049
3055
.10.1063/1.858715
26.
Buhler
,
J.
, and
Papantoniou
,
D.
,
2001
, “
On the Motion of Suspension Thermals and Particle Swarms
,”
J. Hydraul. Res.
,
39
(
6
), pp.
643
653
.10.1080/00221686.2001.9628293
27.
Morton
,
B. R.
,
Taylor
,
G. I.
, and
Turner
,
J. S.
,
1956
, “
Turbulent Gravitational Convection From Maintained and Instantaneous Sources
,”
Proc. R. Soc. London, Ser. A
,
234
(
1196
), pp.
1
23
.10.1098/rspa.1956.0011
28.
Ruggaber
,
G. J.
,
2000
, “
The Dynamics of Particle Clouds Related to Open-Water Sediment Disposal
,”
Ph.D. thesis
,
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology
,
Cambridge, MA
.https://dspace.mit.edu/handle/1721.1/9009
29.
Gensheimer
,
R.
,
Adams
,
E.
, and
Law
,
A.
,
2013
, “
Dynamics of Particle Clouds in Ambient Currents With Application to Open-Water Sediment Disposal
,”
J. Hydraul. Eng.
,
139
(
2
), pp.
114
123
.10.1061/(ASCE)HY.1943-7900.0000659
30.
Math Works, Inc
.,
2018
,
MATLAB software (Computer software)
,
Math Works
,
Natick, MA
.
31.
H. B.
Fischer
,
E. J.
List
,
R. C. Y.
Koh
,
J.
Imberger
, and
N. H.
Brooks
, eds.,
1979
,
Mixing in Inland and Coastal Waters
,
Academic Press
,
San Diego, CA
.10.4319/lo.1982.27.3.0593
You do not currently have access to this content.