Abstract

The unsteady electroosmotic flow of generalized Maxwell fluids in triangular microducts is investigated. The governing equation is formulated with Caputo–Fabrizio time-fractional derivatives whose orders are distributed in the interval [0, 1). The linear momentum and the Poisson–Boltzmann equations are solved analytically in tandem in the triangular region with the help of the Helmholtz eigenvalue problem and Laplace transforms. The analytical solution developed is exact. The solution technique used is new, leads to exact solutions, is completely different from those available in the literature, and applies to other similar problems. The new expression for the velocity field displays experimentally observed ‘velocity overshoot’ as opposed to existing analytical studies none of which can predict the overshoot phenomenon. We show that when Caputo–Fabrizio time-fractional derivatives approach unity the exact solution for the classical upper convected Maxwell fluid is obtained. The presence of elasticity in the constitutive structure alters the Newtonian velocity profiles drastically. The influence of pertinent parameters on the flow field is explored.

References

1.
Xu
,
M.
, and
Tan
,
W.
,
2006
, “
Intermediate Processes and Critical Phenomena: Theory, Method and Progress of Fractional Operators and Their Applications to Modern Mechanics
,”
Sci. China, Ser. G: Phys. Astron.
,
49
(
3
), pp.
257
272
.10.1007/s11433-006-0257-2
2.
Zhong
,
W.
,
Li
,
C.
, and
Kou
,
J.
,
2013
, “
Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media
,”
Adv. Math. Phys.
,
2013
, pp.
1
7
.10.1155/2013/429835
3.
Baleanu
,
D.
,
Srivastava
,
H. M.
,
Daftardar-Gejji
,
V.
,
Li
,
C.
, and
Machado
,
J. A. T.
,
2013
, “
Advanced Topics in Fractional Dynamics
,”
Adv. Math. Phys.
,
2013
, pp.
1
1
.10.1155/2013/723496
4.
Caputo
,
M.
, and
Fabrizio
,
M.
,
2016
, “
A New Definition of Fractional Derivative Without Singular Kernel
,”
Progr. Fract. Differ. Appl.
,
2
(
1
), pp.
1
13
.10.18576/pfda/020101
5.
Makris
,
N.
,
Dargush
,
G. F.
, and
Constantinou
,
M. C.
,
1993
, “
Dynamic Analysis of Generalized Viscoelastic Fluids
,”
J. Eng. Mech.
,
119
(
8
), pp.
1663
1679
.10.1061/(ASCE)0733-9399(1993)119:8(1663)
6.
Hernandez-Santiago
,
J.
,
Macias-Garcia
,
A.
,
Hernandez-Jimenez
,
A.
, and
Sanchez-Gonzalez
,
J.
,
2002
, “
Relaxation Modulus in PMMA and PTFE Fitting by Fractional Maxwell Model
,”
Polym. Test.
,
21
, pp.
325
331
.10.1016/S0142-9418(01)00092-7
7.
Wenchang
,
T.
, and
Mingyu
,
X.
,
2002
, “
Plane Surface Suddenly Set in Motion in a Viscoelastic Fluid With Fractional Maxwell Model
,”
Acta Mech. Sin.
,
18
(
4
), pp.
342
349
.10.1007/BF02487786
8.
Wenchang
,
T.
,
Wenxiao
,
P.
, and
Mingyu
,
X.
,
2003
, “
The Unsteady Flows of a Visco-Elastic Fluid With the Fractional Maxwell Model Between Two Parallel Plates
,”
Int. J. Non-Linear Mech.
,
38
(
5
), pp.
645
650
.10.1016/S0020-7462(01)00121-4
9.
Li
,
C.
,
Zheng
,
L.
,
Zhang
,
X.
, and
Chen
,
G.
,
2016
, “
Flow and Heat Transfer of a Generalized Maxwell Fluid With Modified Fractional Fourier's Law and Darcy's Law
,”
Comput. Fluids
,
125
, pp.
25
38
.10.1016/j.compfluid.2015.10.021
10.
Vieru
,
D.
,
Fetecau
,
C.
, and
Fetecau
,
C.
,
2008
, “
Flow of a Viscoelastic Fluid With the Fractional Maxwell Model Between Two Side Walls Perpendicular to a Plate
,”
Appl. Math. Computation
,
200
(
1
), pp.
459
464
.10.1016/j.amc.2007.11.017
11.
Qi
,
H. T.
, and
Liu
,
J. G.
,
2011
, “
Some Duct Flows of a Fractional Maxwell Fluid
,”
Eur. Phys. J. Spec. Top.
,
193
(
1
), pp.
71
79
.10.1140/epjst/e2011-01382-6
12.
Zhang
,
Y.
,
Zhao
,
H.
,
Fawang
,
L.
, and
Bai
,
Y.
,
2018
, “
Analytical and Numerical Solutions of the Unsteady 2D Flow of MHD Fractional Maxwell Fluid Induced by Variable Pressure Gradient
,”
Comput. Math. Appl.
,
75
(
3
), pp.
965
980
.10.1016/j.camwa.2017.10.035
13.
Li
,
X.-X.
,
Yin
,
Z.
,
Jian
,
Y.-J.
,
Chang
,
L.
,
Su
,
J.
, and
Liu
,
Q.-S.
,
2012
, “
Transient Electro-Osmotic Flow of Generalized Maxwell Fluids Through a Microchannel
,”
J. Non-Newtonian Fluid Mech
,
187–188
, pp.
43
47
.10.1016/j.jnnfm.2012.09.005
14.
Poole
,
R. J.
,
Escudier
,
M. P.
, and
Oliveira
,
P. J.
,
2005
, “
Laminar Flow of a Viscoelastic Shear-Thinning Liquid Through a Plane Sudden Expansion Preceded by a Gradual Contraction
,”
Proc. Roy. Soc. Lond. Ser. A
,
461
(
2064
), pp.
3827
3845
.10.1098/rspa.2005.1535
15.
Poole
,
R. J.
,
Escudier
,
M. P.
,
Afonso
,
A.
, and
Pinho
,
F. T.
,
2007
, “
Laminar Flow of a Viscoelastic Shear-Thinning Liquid Over a Backward-Facing Step Preceded by a Gradual Contraction
,”
Phys. Fluids
,
19
(
9
), p.
093101
.10.1063/1.2769380
16.
Riley
,
K. F.
,
Hobson
,
M. P.
, and
Bence
,
S. J.
,
2006
,
Mathematical Methods for Physics and Engineering
,
Cambridge University Press
,
Cambridge, UK
.
17.
Wang
,
C. Y.
,
Kung
,
C. F.
, and
Chang
,
C. C.
,
2016
, “
Approach to Analytic Solutions for Electroosmotic Flow in Micro–Ducts by Eigenfunctions of the Helmholtz Equation
,”
Microfluid. Nanofluid.
,
20
(
8
), p.
111
.10.1007/s10404-016-1764-8
18.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics
,
Wiley
,
New York
.
19.
Trim
,
W. D.
,
1990
,
Applied Partial Differential Equations
,
PWS-Kent Publishing Company
,
Boston, MA
.
20.
Pinsky
,
M. A.
,
1985
, “
Completeness of the Eigenfunctions of the Equilateral Triangle
,”
SIAM J. Math. Anal.
,
16
(
4
), pp.
848
851
.10.1137/0516063
21.
Tsangaris
,
S.
, and
Vlachakis
,
N. W.
,
2003
, “
Exact Solution of the Navier-Stokes Equations for the Oscillating Flow in a Duct of a Cross-Section of Right-Angled Isosceles Triangle
,”
J. Appl. Math. Phys., Z. Für Angewandte Mathematik Und Phys. ZAMP
,
54
(
6
), pp.
1094
1100
.10.1007/s00033-003-2013-z
22.
Seth
,
B. R.
,
1947
, “
Transverse Vibrations of Rectilinear Plates
,”
Proc. Indian Acad. Sci.
,
A25
, pp.
25
29
.
23.
Waters
,
W. D.
, and
King
,
M. J.
,
1970
, “
Unsteady Flow of an Elastico-Viscous Liquid
,”
Rheol. Acta
,
9
(
3
), pp.
345
355
.10.1007/BF01975401
24.
Poole
,
R. J.
, and
Alves
,
M. A.
,
2009
, “
Velocity Overshoots in Gradual Contraction Flows
,”
J. Non-Newtonian Fluid Mech.
,
160
(
1
), pp.
47
54
.10.1016/j.jnnfm.2009.03.005
You do not currently have access to this content.